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SUMMARY

The goal of this thesis is to synthesize believable motions of a character in-

teracting with its surroundings and manipulating objects through physical contacts

and forces. Human-like autonomous avatars are in increasing demand in areas such

as entertainment, education, and health care. Yet modeling the basic human motor

skills of locomotion and manipulation remains a long-standing challenge in animation

research. The seemingly simple tasks of navigating an uneven terrain or grasping cups

of different shapes involve planning with complex kinematic and physical constraints

as well as adaptation to unexpected perturbations. Moreover, natural movements

exhibit unique personal characteristics that are complex to model. Although motion

capture technologies allow virtual actors to use recorded human motions in many

applications, the recorded motions are not directly applicable to tasks involving in-

teractions for two reasons. First, the acquired data cannot be easily adapted to

new environments or different tasks goals. Second, acquisition of accurate data is

still a challenge for fine scale object manipulations. In this work, we utilize data to

create natural looking animations, and mitigate data deficiency with physics-based

simulations and numerical optimizations.

We develop algorithms based on a single reference motion for three types of control

problems. The first problem focuses on motions without contact constraints. We use

joint torque patterns identified from the captured motion to simulate responses and

recovery of the same style under unexpected pushes. The second problem focuses on

locomotion with foot contacts. We use contact forces to control an abstract dynamic

model of the center of mass, which sufficiently describes the locomotion task in the

xiv



input motion. Simulation of the abstract model under unexpected pushes or antici-

pated changes of the environment results in responses consistent with both the laws

of physics and the style of the input. The third problem focuses on fine scale object

manipulation tasks, in which accurate finger motions and contact information are not

available. We propose a sampling method to discover contact relations between the

hand and the object from only the gross motion of the wrists and the object. We

then use the abundant contact constraints to synthesize detailed finger motions. The

algorithm creates finger motions of various styles for a diverse set of object shapes

and tasks, including ones that are not present at capture time.

The three algorithms together control an autonomous character with dexterous

hands to interact naturally with a virtual world. Our methods are general and robust

across character structures and motion contents when testing on a wide variety of

motion capture sequences and environments. The work in this thesis brings closer the

motor skills of a virtual character to its human counterpart. It provides computational

tools for the analysis of human biomechanics, and can potentially inspire the design

of novel control algorithms for humanoid robots.
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CHAPTER I

INTRODUCTION

Interactive virtual characters play an increasingly important role in entertainment

and education, often times performing in live action shots with human actors and

collaborating with human players in video games or a training session. The close in-

teraction between virtual characters and human raises the bar for computer graphics

research to generate realistic characters that appear and perform intelligently in un-

foreseeable situations. Advanced rendering techniques synthesize natural appearance

by simulating the multi-layered scattering of photons under the skin [33], adapting

to lighting conditions in interactive rates [34]. The realism in appearance in turn

requires the avatar to possess comparable motor skills to a human so as to stimulate

positive and empathic emotional responses [88, 102, 103]. A believable virtual human

is expected to not only navigate around obstacles, pick up objects, and interact with

other virtual humans autonomously, but also respond to unexpected perturbations,

adapt to changes in the environment, and most importantly, perform in a manner

that feels natural to humans. While we have the uncanny ability to detect the slight-

est discrepancy in synthetic motions, our understanding of natural movements and

its underlying generative mechanism is no match to our sophistication in perception

and performance. Synthesis of the most basic human motor skills of locomotion and

manipulation remains a grand challenge in animation research and human motor

control.

The most principled way of generating motion is through physics simulation. Nat-

ural phenomena such as wavy ocean [22], splashy water [113], fire and smoke [39], or

passive motions such as a poked [38], smashed [130], or melted [19] Stanford bunny
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model can be simulated faithfully and efficiently. Compared to these dynamic sys-

tems with tens of thousands of degrees of freedom, simulation of the human body

may seem trivial. While simulation of a ragdoll is effortless, controlling a character to

perform in a meaningful way faces many challenges presented by both the mechanical

system and the biological system.

Characteristics of the mechanical system presents three hurdles to the design of a

robust control strategy for the most basic motor skills: posture control, balance and

locomotion control, and object manipulations. First, the relation between control

force and the resultant motion is governed by a coupled and nonlinear dynamic system

that in general has no analytical solution. Computing the required forces to track a

pose precisely is nontrivial. Second, as a consequence of the momentum conservation

law, internal forces per se cannot directly change the position of the center of mass

(COM) to perform locomotion and maintain balance. This is also known as the

under-actuation problem. Locomotion can be realized only through exerting contact

forces and utilizing frictions from the environment. However, contacts and frictions

introduce nonlinear kinematic constraints and discontinuities to the dynamic system,

further complicating the problem of controller design on a third count. Grasping

and manipulation tasks are more difficult in this regard because contacts and forces

are vital components in the interaction between the hand and the object. Finally, a

robust controller often needs to consider the accumulated performance in a long term

under nonlinear dynamics and kinematics, under-actuation, and discontinuity.

Moreover, the laws of physics alone is far from sufficient to describe human motion.

Our movements are the results of a complex process that requires coordinations of

the brain, the central nervous system, and the musculoskeletal system to accomplish

intended goals under biomechanical and physical constraints [94]. It is the neurome-

chanical system rather than physics that characterizes human movements. Limb

proportions, muscle strength, emotional states, personal preferences based on past

2



experience and culture influences, etc. all contribute to a person’s unique movement

style [96]. Some of these factors are tasks-specific while others are persistent across

activities for an individual. The complexity of human motion is daunting and fasci-

nating at the same time that it intrigues researchers from many scientific disciplines

such as robotics and biomechanics in addition to computer animation.

Biomechanicists study how the human body solves these difficult problems through

examination of the biomechanical structure and analysis of both kinematic data and

muscle activities of human performing motor tasks. Some common beliefs are that

human motions are “lazy” and energy efficient, and exhibit recognizable coordina-

tion patterns. These observations lead to simple passive models such as the inverted

pendulum model and its variations as the underlying model for walking and balanc-

ing, and categorization of balance recovery strategies into the ankle strategy and the

hip strategy [54]. Insights from biomechanics shed light on the controller design in

robotics and character control. Theses models have been successfully applied to de-

velop locomotion controllers, in which forces are actively applied to mimic the motion

of a passive structure of certain physics properties. Similarly, grasp taxonomy based

on the analysis of the anatomical model of the hand, such as the precision grip and

power grip [91], has been the primary means of grasp control in robot hands. Al-

though these high level principles are successful as general guidelines for reproducing

human motor skills, they do not direct low level details of a motion. On one hand, the

low level control implementation is still highly specialized. Controller design remains

a time and resource consuming task that rely on experience and trial-and-error. On

the other, while the models are meant to explain the common denominator of hu-

man motions, they have very limited power in describing the styles and variations of

natural movements. Expressing preferences within this control framework is not only

difficult, but also interfere with the control goals in most cases.
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A more systematic control framework is variational optimization. It naturally re-

flects the insight that human motions, like other natural passive motions, are optimal

in one way or another, within constraints imposed by the physical world and our

biomechanical structure. Energy minimization and jerk minimization are the mostly

commonly used objective term to describe human motion. Casting control as an op-

timization also has the advantage that any high level preference or control goals can

be specified easily as a performance metric. The optimization process automatically

figure out the best way to achieve the goals without lower level user guidance. Trajec-

tory optimization approaches have been applied in character animation for authoring

both highly dynamic [129, 79, 101] and low energy [78] motions from minimum user

input, as well as for offline adaptation of existing motions to different physical con-

straints and control goals by maintain the optimality metric [99, 111]. However, the

generic objective terms similarly suffer from the problem that detail variations are

not captured or explained within the model. Although better biomechanical models

[78] or more accurate modeling of the dynamics system with signal dependent noise

[46, 116] can be used to mitigate some of the problems, they are usually computa-

tionally expensive.

An affordable and readily available source of natural and stylistic motions is the

kinematic data from motion capture thanks to the advance in modern motion capture

(mocap) technology. Motions can be treated as a form of data, just as image and text,

which has intrinsic structures that capture characteristics of natural movements. Sta-

tistical models can be built to describe the manifold of “naturalness”, and be used to

interpolate and extrapolate realistic motions from relatively sparse examples. How-

ever, these models are difficult to be used in conjugate with physics-based simulation

or incorporated in controller design. The major reason is that they cannot distinguish

the influence of environmental and physical constraints from individual preference of

styles in the training data. Therefore, they cannot be adapted to different physical
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constraints or unexpected events. Some preliminary attempts exist to empirically

trade off the factor of physical environment in the training motion, but the results

are far from ideal. Style-content separation is an interesting open research question

in learning human motion styles.

In light of the accumulated experiences in capturing characteristic motions in con-

troller design from different disciplines and schools of approaches, this work attempts

to marry the benefits from biomechanical principles, optimization and motion cap-

ture. We additionally have an ambition to provide a systematic scheme for intuitive

controller design so that believable motions can be easily directed and widely applied.

1.1 Approach

Our approach builds on the believe that characteristic motions should co-exist rather

than conflict with robust control. The common approach of trading off robustness

with naturalness in controller design is a consequence of trying to achieve both goals in

the control space directly. We argue that rich details and variation exist in motions

under the same constrained environment suggest that styles “live” in a subspace

tangential to constraints. Based on this insight, we derive control algorithms for

three motor tasks under different physical constraints.

We choose to use a motion capture sequence as input to the control algorithm

for two reasons. First, as motion capture technology becoming more commonplace,

motion gradually becomes an intuitive interface for authoring and directing contents.

Supplying one single motion sequence to express the high level intention of motion is

arguably more natural and preferable than specifying rules or constraints for a task.

In addition, this interface can be integrated seamlessly with traditional manually

authored animations because they are simply kinematic data of a skeletal model. We

will show in this work that even partial motion data can be a useful source of input

to synthesize motions and control when the task is highly constrained. Second, since
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we do not yet have a descriptive model for modeling styles in a motion, it is a sensible

choice to use the motion as a whole.

In the following chapters, we will describe three algorithms that synthesize in-

teractions with rich details and styles. We exploit the contact constraints involved

in an interaction, and explore the subspace within physics constraint and kinemat-

ics constraints defined by the contacts to express characteristics in natural human

motions.

Chapter 3 addresses the problem of posture responses to perturbations in the

absence of contact constraints, i.e. the upper body motion in locomotion. We derive

controllers that capture the unique patterns in the reference motions, and retain

the pattern at the presence of disturbances. Without external influence from the

environment, the motion can be completely described by the internal joint torques.

While posture control is relatively easy without concerning balance, the question is

how should the character behave when perturbed such that it is compliant to changes

yet able to recover in a way that seems natural to the unperturbed motion.

We propose to identify the actuation space of joint torques in the input motion,

then turn a control problem into a passive simulation by constraining the torques in its

rank space at all times. We hypothesize that the torque actuation space characterizes

the motion and remains unchanged with and without perturbations. The idea is

inspired by the muscle synergy theory in neural control [117], which states that muscle

activations are synchronized, and only a small number of synchronized groups are

utilized in familiar tasks. Nonnegative matrix factorization (NMF) has been used

by neuroscientists to analyze electromyography (EMG) data because EMG signals

are positive numbers. In our work, we use Principal Component Analysis (PCA) to

identify the null space of joint torques, and transform the control problem into passive

simulation in the null space. We choose PCA instead of NMF because joint torques are

bidirectional. Results show that our algorithm can successfully synthesized convincing
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responses to unexpected perturbations for different locomotion activities without case-

by-case authoring effort.

In Chapter 4, we addresses the balance issue in locomotion at the presence of

perturbations or changes in the environment. Biped locomotion balance is usually

modeled by an inverted pendulum located in the COM. Control torques are applied

to mimic this passive and reactive behavior. Although the simplicity of this model

leads to many successful applications, it usually behave as a stiff system to ensure

robustness, thus creating unnatural motions. In this work, we also propose a similar

abstract model of the COM. Our work depart from the pendulum model in that we

explicitly utilize ground contact forces as control signals to direct the COM motion.

Optimization is used to compute the desired amount of ground reaction forces to

maintain the COM in a balance state. Following the insights in biomechanics of

walking, we additionally regulate the angular momentum around the COM for better

balance behavior.

The use of an abstract model benefits the optimization problem thanks to its

simplicity. As a result, we can formulate more advanced optimization problem such

as enforcing terminal constraints and adjustments of timing to provide more flexibility

in motion synthesis. Moreover, we can apply optimal feedback controllers from the

optimization result in online simulation, and adapt the input motion to different

environments, in anticipation of future changes. The full body motion is reconstructed

from the reference motion by respecting the dynamic states of the COM model. As a

result, we obtain response and balanced motions that are dynamically consistent with

the environment, and still retain the gross styles in the reference. Because the COM

constraint and angular momentum affect the entire body, the synthesized motion

exhibits coordinations across joints.

The major drawback of our abstract model is its dependency on the contact in-

formation from the reference motion. Change of contacts is difficult because the
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dynamics is discontinuous at the point of change, and prohibits the use of contin-

ues optimization. The problem is more pronounced in object manipulations because

real-world interactions between the hands and the objects are very complex and with

frequent changes. Therefore, robotic manipulators focus on stable grasps that ensure

force closure. Research in grasping and manipulation largely concerns about stability

analysis, how to precisely achieve a stable grasp, and how to maintain or regain stabil-

ity when disturbed. However, humans are never precise in handling everyday objects.

We employ many reactive strategies based on the object’s motion to just “get the job

done”. A lot of interesting phenomena such as slipping or finger gaiting emerge as a

result. In computer animation, we have not been able to recreate manipulations with

rich details systematically.

Data acquisition is also challenging for manipulation when the fine scale finger

movements and gross scale body movements need to be captured at the same time.

Optical motion capture devices suffer from occlusions induced by interactions between

the hand and the object. The use of inertia sensors, on the other hand, negatively

affect the performance of the tasks because of the cumbersome attachment. While

it’s still possible to capture close range small scale object manipulation tasks, data

of more practical and common scenarios that require coordination between the full

body and the hands, such as cooking, fetching a book from a bookshelf, or carrying

a box from one place to another, are not available.

In Chapter 5, we address the problem of synthesizing realistic hand-object ma-

nipulation motions with rich details. We observe that the intricate finger motions are

largely constrained by the spatial relations between the wrist and the object, which

we can obtain easily from modern mocap settings. Although the contact constraints

are discrete, we can use sampling techniques to discover feasible solutions. The dif-

ferent detailed and characteristic manipulation strategies can be sufficiently encoded

into the change of contact points. By intelligently confining the contact points within
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physical constraints, we can efficiently discover a variety of hand motions without any

prior knowledge of stability or grasp taxonomy.

1.2 Contributions

The work in this dissertation has several contributions to human character animation.

1. A framework for synthesis of stylistic postural responses and recov-

ery. We propose a generic controller that carries the motion style of a captured

sequence to dynamics responses and recovery in an interactive application. The

framework is generic and robust to apply on different motion styles and char-

acter proportions. It can be seamlessly integrated with any existing kinematics

based controller without modifications on either party. It is also be applied to

a variety of realistic scenarios such as dodging obstacles, stepping on a banana

peel, or trying not to spill coffee while walking.

2. A simplified dynamic model for balance control in locomotion. We

propose a simple model that abstracts the fundamental dynamics of an under-

actuated structure. It is the first model that casts balance control problem as

an active system exerting contact forces to propel the COM. Since the biome-

chanical structure is abstract out, the model can be applied to a large class of

mechanical structures and motion contents.

3. Application of advanced optimal control algorithm on human char-

acter animation. Owe to the simplicity of the abstract model, we are able to

leverage advanced optimal control algorithm to develop robust controllers for

human motion. Our controller can flexibly adjust the duration and final goals

of the motion online, and uses unilateral contact forces to achieve the goals.

The flexibility and generality of our formulation allows the synthesized motion

to deviate significantly from the input while still maintain plausibility.
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4. A framework for synthesizing intricate finger movements in hand-

object manipulations. We propose a generic sampling framework to synthe-

size complex hand manipulations with rich details and large varieties. This is

the first method capable of synthesizing physically plausible hand motions with

natural finger gaits and contact changes with no prior knowledge of the task or

grasp taxonomy. Our method is not limited to generate stable manipulation or

tasks motions. It is also flexible to adapt the hand motion to different object

properties.
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CHAPTER II

RELATED WORK

In this chapter, we review related research in the area of human motion control and

synthesis, including hand manipulations. In Section 2.1, we review a few common ap-

proaches to synthesizing responsive human motions. We then review current research

in hand manipulations in Section 2.2. Complex interactions with discrete contact

events such as those in grasping are usually solved with sampling methods. In Sec-

tion 2.3, we briefly review recent animation research that uses sampling to derive

controllers with frequent contacts. Finally, in Section 2.4, we review two research

results in biomechanics on human motor controls, which greatly inspire the work

presented in this thesis.

2.1 Human motion synthesis

Kinematics-based approaches and physics-based approaches are two major means

to create character animations. Hybrid approaches that combine the two methods

utilize the benefits of both. On a parallel track, optimization is a useful tool that

all approaches explore to develop sophisticated algorithms. To effectively deal with

high-dimensional human motions, various dimensional reduction and model reduction

techniques are proposed. In the following sections, we will give a brief introduction

of these approaches in animation research.

2.1.1 Kinematics approaches

Kinematics control has been the common practice in industry for character anima-

tion because it provides intuitive and precise control over both the contents and the

styles of the motion. However, manually designed motions are highly specialized and
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difficult to change in response to run time input. With motion capture techniques,

motion data become easier to gather in large quantities, thus boost the development

of data-driven algorithms for motion editing. Kovar et al. [68] and Arikan and Forsyth

[12] concatenate and interpolate different motion clips where they are most similar to

switch between actions according to user commands. Responsiveness of the character

depends on the availability of motions in the database. Many researchers parameter-

ize the database to explore a continuous space for interpolation [67, 105, 47, 145], and

fill in data where much needed [100]. With limited motion clips, reinforcement learn-

ing can improve responsiveness by selecting the best motions for a task in the long

run [120, 84, 74]. Lee and Popović [73] further used inverse reinforcement learning

to control an intelligent character that can adapt high level user intents to different

environment settings.

While a few walking cycles suffice simple navigation tasks, highly dynamic mo-

tions such as push response and balance recovery require much larger number of

special purpose motion clips. With a large database, Arikan [13] and Yin et al. [144]

use external forces as a heuristic to select the appropriate motion, then apply small

deformations to generate realistic responses.

This thesis proposes algorithms that enhance a single motion sequence with a

wide range of dynamics responses, therefore removing the dependency on a mo-

tion database. Nonetheless, our methods can enhance the capability of the motion

database when applied to more motions.

2.1.2 Physics-based simulations

Compared to kinematically controlled characters, physically simulated characters are

dynamically consistent with the physical world and are responsive to the environment.

Earlier work by Hodgins et al. [52, 131] demonstrates that complex human movement

and maneuvers, such as running, jumping, diving, and tumbling, can be physically
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simulated in a virtual environment. Designing a robust controller, however, requires

immense manual efforts and expertise. Researchers have to study every gory detail of

an activity and develop specific algorithms for every stage of execution, which takes

in a large set of carefully chosen parameters. While the results are very compelling,

adaptation of these special-purpose controllers to different structures or activities is

very difficult.

A few research aims to adapt controllers to novel situations. Hodgins et al. [51]

adapted the same controller to characters of different proportions, and Faloutsos et al.

[36] composed controllers of different goals for more complex tasks. Others proposed

automatic algorithms to ease the design of control parameters, although balance is

largely omitted. Neff and Fiume [93] applied antagonistic controllers to generate more

compliant motions; Allen et al. derived analytical solutions for PD controllers that

can control the timing [9] and target states [10] of the motion.

As researchers gain better understanding of biped locomotion over the years, gen-

eral balance controllers have been developed. Yin et al. [143] proposed a simple yet

robust biped balance control strategy, which has been used as the baseline to develop

controllers of more advanced skills [142, 26] and more natural motions [126, 127]. Last

year, we have seen general biped controllers that give rise to natural and compliant

walking motions [133, 87, 27]. The progress made in biped balance control in anima-

tion has been amazing. Yet we have not seen general algorithms beyond walking or

intuitive control of styles beyond a few set points.

2.1.3 Hybrid approaches

A promising research direction for natural and responsive animation is to combine the

advantages of both kinematics control and physics-based simulation. For example,

tracking the upper body motion from a captured sequence can generate expressive

results [146, 141, 9].
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Static balance when tracking motion capture data can be achieved by carefully

maintaining contacts [5] and minimizing angular momentum [81]. In most cases,

however, balance requires special treatment because the kinematics data impose ad-

ditional constraints on top of all challenges of a balance controller. For dynamic

balance, many researchers proposed separate balance strategies in conjunction with

upper body tracking [147, 143, 121, 76], or map the kinematics data to an inverted

pendulum to develop balance strategies [136, 71]. Alternatively, Sok et al. [107] mod-

ified the captured motion offline for better balance behavior during tracking. Linear

quadratic regular (LQR) is another effective algorithm to faithfully track a full body

motion. It linearizes the dynamic system around the reference motion to derive a

feedback controller that closely tracks the reference data. Da Silva et al. [29] applied

LQR on a simplified model to balance various bipedal locomotion. Muico et al. [89]

modified LQR to take into account the nonlinear dynamics of the current moment,

and adapt the controller to environment contacts. Their characters closely micmic

the captured motions even when the environment is altered. However, LQR-based

tracking controllers are robust only to small deviations from the reference motion.

Larger variations may require switching among references.

With a few captured responsive motions, myself and Liu [140] used a low-dimensional

statistical model to model the perturbation dynamics and applied simulations as guid-

ance to navigate in the motion space. Similarly, Lee et al. [75] built a motion field

from captured motions by interpolating motion dynamics using nearest neighboring

states, then propelled the character in this velocity field.

Researchers also proposed to switch between dynamics simulation and motion

capture data whenever necessary [104, 83, 92]. In particular, Zordan et al. [148]

proposed a framework that uses minimal simulation interval after the impact and

relies on the captured motions only when perturbations are not presented.
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2.1.4 Optimization-based approaches

Optimization has been a useful tool for both kinematics-based methods and physics-

based methods. Kinematics-based methods use the equation of motion as constraints

to generate optimal trajectories that are consistent with the physical world. Users can

encode high-level goals as constraints or directly specify poses and contacts constraints

to direct the motion [129, 37, 101]. Optimization is also used offline to adapt a motion

sequence to characters of drastically different structures [43], to various altered goals

[99, 111], or to a different task with the same style [78]. Incorporating fundamental

principles of animal movements in the objectives can synthesize convincing motions

beyond human characters. Wu and Popović [132] generate realistic bird flight motions

comparable to video footage. Wampler and Popović [125] developed an optimization

framework to generate energy efficient locomotion for imaginary characters.

Similarly, physics-based simulations use short horizon optimization to adjust static

balance in real time by minimizing momentum [81], and to achieve multiple tasks

simultaneously [5, 3, 59]. In addition, de Lasa and colleagues [31, 32] also develop

new optimization algorithms to execute multiple tasks in straight priority so that

important goals will always be achieved when feasible. Long horizon optimization, on

the other hand, has been useful for tracking locomotion because the control strategy

anticipates future events and respects the final goal. In particular, LQR has been

proven effective in response to external forces and environmental perturbations while

following the reference motion [29, 89]. Da Silva et al. [30] further showed a remarkable

result that optimal tracking controller can be easily combined to generate optimal

controllers for new goals.

2.1.5 Dimensional reduction and model reduction

Principal component analysis (PCA) has been frequently used to reduce the dimen-

sionality of motion data for applications in computer graphics, robotics, and computer
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vision due to its simplicity and effectiveness. In computer animation, PCA is typi-

cally used to expedite the computations for motion blending, recognition, or modeling

[17, 60, 101, 15, 20].

Simplified representations of human body have been proposed to reduce the com-

plexity of the human dynamic system in simulation or optimization of character mo-

tion [99]. These abstract models, however, are typically designed for specific types of

activities, such as a spring-mass model for running and hopping [16], or an inverted

pendulum for standing [136] or walking [7, 70, 109]. The abstract dynamics model

proposed in this work makes no assumption about the character structure or activity,

therefore is generic across a wide range of motions.

2.2 Hand manipulations

Many researchers have proposed different approaches to synthesizing detailed hand

motion in computer animation. Hand motion can be directly captured from the real

world and played back in the virtual world [82]. However, when the motion involves

object manipulation, occlusion and imprecision become major issues. Previous work

has applied kinematic approaches to create grasping motion [14, 55, 65] or manipula-

tion of musical instrument [64, 35]. These methods add great details to the character

animation, but the resulting motions usually lack physical realism and variability.

Our method also applies inverse kinematics to generate joint motions for the hand.

However, the contact points used to constrain the hand poses are computed in con-

sideration of motion diversity and physical realism.

Physical simulation is another promising approach to synthesizing hand animation

[97, 69, 110, 122, 6]. Previous methods developed grasp controllers using recorded

hand motion [97, 69] and contact forces [69] . Because the motion is physically sim-

ulated, one can apply the same controller to different dynamic situations or objects.
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Our method has different focus but it is straightforward to integrate our search algo-

rithm for contact points to enhance existing dynamic controllers. Physically plausible

hand motion can also be generated by optimization-based approaches. Liu [77] for-

mulated a layered optimization that solves for contact forces, contact positions, joint

torques, and hand motion. We also formulate a convex optimization to compute con-

tact forces, but the contact points are computed by a very different approach. Instead

of formulating an nonconvex continuous optimization which may or may not converge

at single solution highly sensitive to a particular objective function and initial val-

ues, we apply a randomized approach to produce a set of solutions, all of which are

physically plausible but visually diverse.

Detailed manipulation exploiting contact mode switching or finger relocation has

been extensively studied in robotics. These sophisticated strategies adjust hand poses

and contact positions in concert to achieve a larger scale of manipulation. Common

strategies, such as controlled sliding and rolling contact [118, 18, 25, 23], or finger

gait [53, 45, 134] can largely improve the capability of robotic manipulators. We

draw many insights from the robotics literature, but our method is fundamentally

different in that we do not use the prior knowledge to synthesize each specific ma-

nipulation strategy. Rather, we employ a generic randomized algorithm to discover

those strategies efficiently and automatically.

Creating a natural scene with rich and close interaction between humans and the

environment has been a challenging research problem. Many existing approaches

combine the motion capture data with motion adaptation techniques to synthesize

interaction between the character and the objects in the environment. Gleicher [43]

used kinematic constraints to fix the character’s hands on the manipulated objects.

Yamane et al. [137] proposed a global path planner to synthesize the object’s trajec-

tory while maintaining the kinematic constraints and naturalness of motion capture

data. Ho et al. [50] introduced a mesh representation to maintain implicit spatial
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relationship of the scene during motion editing. Jain and Liu [57] coupled full-body

mocap data with manipulated objects via physical simulation. Through the dynamic

coupling, human motion adaptation can be driven by the edited motion of the object.

In this work, we aim to create interactive scenes in much greater details than what

previous methods produced. The hand motion must be dynamically and kinemati-

cally consistent with the objects and the full-body motion, while exhibits the level of

complexity and diversity of real human hands during manipulation.

2.3 Sampling-based motion control

Sampling is a generic and effective way of solving complex control problems that often

involve discrete events such as contacts. It has been applied to control the final states

of rigid body simulations [123, 21] and character animation [80, 107, 124, 95, 106].

For methods involving actively controlled systems, determining a proper sampling

space is crucial. For example, Liu et al. [80] sampled the desired joint angles around

the nominal trajectory, Sok et al. [107] sampled the initial joint configuration of the

character, and van de Panne and Fiume [124] sampled the weights of a neural network

for the sensors and actuators of a controlled system. Our method generates random

samples in the domain of contact positions on the objects. This choice of sampling

space has the advantages of providing important constraints to hand poses, and at

the same time, being highly constrained by the state of contact forces. The former

simplifies the process of creating final hand motion and the latter greatly reduces

the number of required samples. A few applications in computer animation adopt

randomized path planning algorithms from robotics literature [24, 137]. Our problem

is different in that we demand a set of paths with large diversity. The existing path

planning methods, such as Rapidly-exploring Random Trees [72] and Probabilistic

Roadmap [63], are not designed for exploration of all possible paths in that regard.
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2.4 Biomechanics principles

Animation and robotics researcher constantly consult neuroscientists for principles in

human motor control to help create more natural and robust motions. The work in

this thesis is greatly inspired by two research results in biomechanics research, namely

muscle synergies and angular momentum regulation in walking.

2.4.1 Muscle synergies

Biomechanics researchers have applied dimension reduction techniques to the muscle

activation data measured from behavioral experiments [119, 8]. Ting [114] suggested

that a limited set of muscle synergies, defined as low-dimensional modules formed

by muscles activated in synchrony, are used to control the center of mass after pos-

tural perturbations. Researchers apply nonnegative matrix factorization (NMF) to

the measured EMG data and discover activation patterns during postal perturbation

responses. Our method is inspired by Ting’s work in that we formulate the dynamic

equations in the space of muscle synergies, rather than the space of joint configu-

rations. Because we work with the aggregated joint torques instead of real muscle

activations, we apply PCA instead of NMF to identify the null space of torque actu-

ation which do not play an important role in the reference motion.

2.4.2 Angular momentum regulation

Many human motor skills require control of whole body linear and angular momentum

to achieve task-level goals while maintaining balance. Several researchers in computer

graphics have demonstrated that aggregate body momentum can be a compact rep-

resentation for editing ballistic motion [79, 4] or locomotion [66]. Regulating linear

and angular momenta have also been investigated for balance control. A rich body

of research in robotics demonstrated the positive effect of minimizing angular mo-

mentum on walking and stepping [98, 62, 44, 49]. Macchietto et al. [81] showed that

simultaneously controlling the center of mass and the center of pressure via changes of
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momenta resulted in much more robust and fluid motion for standing balance against

perturbations. Our method confirms the importance of momentum control in hu-

man motion both in terms of maintaining balance and producing natural movements.

Rather than tracking the momentum trajectory from the input motion, we apply a

zero-angular momentum strategy from biomechanics and robotics literature. As a

result, our method produces robust control for high dynamic motions without any

assumptions about the momentum patterns.
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CHAPTER III

POSTURAL RESPONSES CONTROL IN TORQUE

ACTUATION SPACE

This chapter describes an algorithm for controlling the postural responses of a char-

acter to small-scale perturbations that affect mainly her upper body motion (Figure

1) [138]. The control strategy is derived from a single reference kinematic motion,

either motion captured or hand-animated, to retain the unique movement style in

both responses and recovery. This algorithm is robust to external forces in arbitrary

directions on different body parts at any moment in time, and generic to work on a

wide range of motion styles and activities. Its simplicity allow for seamless integra-

tion with any technique that produces balanced lower body motion in the presence

of large perturbations.

Figure 1: A captured backward walk adapted to a moving platform (left) and a new
environment with obstacles (right).
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3.1 Motivations

Our approach is motivated by the observation that less-controlled joint degrees of

freedom (DOFs) are usually more compliant when perturbed. If we are able to identify

those compliant DOFs, we can apply a hybrid method that only considers dynamics

in the compliant DOFs and kinematically controls the rest of the character. Instead of

determining these DOFs by heuristics and hand-tuning their physical parameters, we

use Principal Component Analysis (PCA) to define a new set of coordinates, ranked

by the level of joint actuations in the input motion. Our method provides a more

principled way to identify the less actuated coordinates (corresponding to eigenvalues

close to zero) specific to each input motion sequence. We denote those DOFs as

near-unactuated coordinates.

To synthesize the input motion under perturbations, we enforce the dynamic equa-

tions of motion only in the near-unactuated coordinates while kinematically main-

taining the original joint trajectories. Because the near-unactuated coordinates use

very little internal torques in the input motion, enforcing the dynamic equations with

zero internal actuation does not visually modify the input motion when there is no ex-

ternal perturbation. When the character is perturbed, however, the near-unactuated

coordinates will compliantly react to the external force while the actuated coordinates

will attempt to maintain the input joint positions. Because the lower body motion

is typically less compliant and the internal joint torques cannot be obtained without

accurate measure of contact forces, our technique only considers the dynamics of the

upper body motion.

Enforcing dynamic constraints in the near-unactuated coordinates leads to two

main advantages. First, the responsive motion varies due to different activities, styles,

and individuals. This is because each motion and perturbation results in a unique

response based on the specific joint torque usage in the input motion. Second, our

formulation bypasses the problem of active body control. The generalized coordinates
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in our parameterization are not aligned with the mechanical joint space, but rather

aligned with a more meaningful actuation space derived from the input motion. By

choosing the appropriate coordinates to enforce the equations of motion, our approach

can create physically responsive motion based on kinematic pose control without

explicitly computing the joint actuations. In practice, our technique can be adapted

transparently to any kinematically controlled framework without the aid of a forward

simulator or additional motion data.

We demonstrate the simplicity and robustness of our approach by showing a wide

range of input motions with arbitrary perturbations. Our results show that realistic

recovery motion emerges as a consequence of the interaction of the kinematic and the

dynamic control. For example, the character sticks out her arms to recover from a

push. We believe this behavior is due to the fact that the objective function must

pull the joints back to the original trajectories without using any internal torques in

the near-unactuated coordinates.

3.2 Overview

Our algorithm first computes the near-unactuated coordinates from an input mo-

tion offline, then simulates the motion by imposing dynamic constraints in the near-

unactuated coordinates. The entire algorithm can be described in three simple steps.

1. Given an input motion sequence Q̄, solve the inverse dynamics problem to

obtain the internal joint torques U on the upper body.

2. Apply PCA on the covariance matrix of U to obtain a set of eigenvectors E.

Define the near-unactuated coordinates Ê as a subset of E with the k smallest

corresponding eigenvalues.

3. Formulate a constrained optimization problem at each frame to solve for a pose

that satisfies the equations of motion in Ê, while maintaining the reference
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motion Q̄.

3.3 Preprocessing

We represent the character’s skeleton as a transformation hierarchy of 18 body nodes

with 24 DOFs on the upper body, and 12 DOFs on the lower body, denoted as qu and

ql respectively. The global translation and orientation are represented by six DOFs

at the root of the hierarchy, denoted as qr.

In the preprocessing step, we identify the near-unactuated coordinates from a

manually selected portion of the input motion, usually a cycle of a periodic motion

such as a walking cycle.

We first solve for joint torques using the equation of motion.

M(q)q̈ + C(q, q̇) = u +
∑

JT f , (1)

where M is the inertia matrix, C is the Coriolis-Centrifugal force, J is the Jacobian

matrix that projects external force f to the generalized coordinates, and u is the

generalized torque vector. Since only the lower body experiences forces from the

ground in the input motion, and the J does not span the upper body DOFs, we can

easily solve for ut on the upper body for any frame t from the input motion alone.

Joint velocity q̇ and acceleration q̈ are approximated from the reference motion using

finite difference.

q̇t =
qt − qt−1

∆t
, (2)

q̈t =
qt+1 − 2qt + qt−1

∆t2
, (3)

where ∆t is the time step.

The generalized joint torque space is then formed by concatenating all torques in

the selected input motion cycle.

U = [u1,u2, · · · ,uT] ∈ ℜ24×T, (4)
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where T is the total number of frame in the motion.

The torque space can be decomposed into a set of orthonormal basis E using eigen

decomposition.

UUT = E



















e0

e1

. . .

e24



















ET (5)

Columns in E are eigenvectors ranked from the largest corresponding eigenvalue e0

to the smallest e24. We divide E into two sets, E = [Ě Ê]: Ě contains the first 24− k

eigenvectors and Ê contains the rest of the eigenvectors with k smallest corresponding

eigenvalues. We then define Ê as the set of near-unactuated coordinates. In our

implementation, k is empirically set to 10 for all the examples except for the Tai-Chi

motion.

3.4 Simulation with constraints

We discretize time domain into intervals of ∆t = 1/60s as in the input motion. At

each time step, we solve for upper body joint angles qu of the next interval t + 1 by

formulating a constrained optimization. We use dynamic constraints CD to ensure

that the near-unactuated coordinates have zero internal actuation at all times.

CD ≡ ÊTut(q, q̇, q̈, f) = 0. (6)

The joint torque vector u is computed via Equation (1), thus expressed as a function

of q, q̇, q̈ and f . If there is no perturbation (f = 0), the original motion is close

to satisfying CD. When a perturbation occurs (f 6= 0), however, the character must

adjust her motion to maintain CD = 0.

We use a spring-like objective to track the input motion Q̄ = (q̄1, q̄2 · · · , q̄T) and
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a damping objective to model the dissipation in the dynamic system:

Gp = qt+1
u − q̄t+1

u (7)

Gv =
qt+1

u − qt
u

∆t
(8)

When human is perturbed unexpectedly, there is typically a delay between the

perturbation and muscle activation due to the latency in sensory feedback [85, 40].

The delay on arm movement due to sensory feedback usually ranges from 150-250

ms. We incorporate this delay by minimizing the torque change for 200 ms after the

perturbation in the highly actuated coordinates Ě.

Gu =
ĚT (ut − ut−1)

∆t
(9)

In summary, we formulate the following optimization at each time step to solve

for upper body motion:

argmin
q

t+1
u

‖Gp‖
2
W1

+ ‖Gv‖
2
W2

+ ‖Gu‖
2
W3

(10)

subject to CD = 0. (11)

W1, W2, and W3 are diagonal weight matrices. In all our experiments, we use the

same set of parameters. W1 is set to 200·1. For W2, the first 3×3 block corresponding

to the DOFs of the spine is set to 30 · 13×3, and the remaining diagonal elements are

set of 10. W3 is set to 1
30
·1 at the time of perturbation, and then smoothly decreased

to zero in 200 ms. These values only reflect the relative importance of the objectives.

They do not depend on the input motion or the skeletal model.

At the absence of perturbations, the input motion Q̄ is the minimizer to this

optimization problem by construction. Therefore, we can reproduce the reference

trajectories precisely. At the presence of perturbations, the minimizer is no longer

zero due to the dynamic constraints CD. Consequently, the optimal motion has to

deviation from the reference according to the perturbations, resulting in responsive
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behaviors. After the perturbations and Gu are removed, the character starts recovery

to the reference. Since q is already different from q̄, the two objective terms Gp

and Gv together determine an intermediate recovery pose as the optimal motion.

Changing the ratio of their weights W1 and W2 can result in motions that under-

shoot or over-shoot the reference. This optimal recovery motion, however, is not

always achievable due to the dynamic constraints. The interplay of the objective and

dynamic constraints results in interesting recovery behaviors.

3.5 Lower body posture

Although our method focuses on the upper body response, we formulate a simple

formula for the root and lower body motion when the character is perturbed. Since

our method does not model the ground contact and friction forces, the impact of the

perturbation on the root can simply be modeled as an impulse, proportional to the

external force f .

q̇t+1
r = q̇t

r +
∆t

m
JT

r f (12)

where m is the total mass of the character and Jr consists of the columns of J

corresponding to qr. If the root movement causes footskating or penetration of the

ground, we apply a simple inverse kinematics method on the lower body to fix the

foot contacts.

3.6 Results

We applied our method to a variety of cyclic motions with different styles performed

by different subjects. Most motions are robust to perturbations with 10 dynamic con-

straints except for the Tai-chi motion where 5 constraints are used. Our results reveal

that dynamic constraints in the near-unactuated coordinates produce compliant re-

sponses to unexpected perturbations and coordinated recovery motions customized

to the input motion.
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3.6.1 Eigenvector analysis.

To demonstrate the importance of the joint actuation space, we conducted several

experiments of a normal walk with different choices of coordinates in which dynamic

constraints are enforced. We first simulated the same input motion with different

numbers of dynamic constraints in the near-unactuated coordinates. The character

appears more responsive as the number of dynamic constraints increases. However,

the character is not able to completely recover from a perturbation when there are

more than 12 dynamic constraints (Figure 2(d)). When the number of dynamic

constraints increases to 16, the character simply fails to track the input motion (Figure

2(b)). The second experiment simulated the motion with a single dynamic constraint

in the coordinate corresponding to the largest eigenvalue. The result shows that the

character is not able to maintain the original motion without actuation in the most

important coordinate (Figure 2(a)).

Currently, the number of dynamic constraints are chosen empirically by conduct-

ing a few experiments using our algorithm. To better understand the distribution of

eigenvalues, we plot them for a few reference motions across individuals and activ-

ities. Figure 3 shows the distribution of eigenvalues for each motion, and Figure 4

shows the accumualted distributions of eigenvalues. The graphs indicate that only a

very small number of eigenvalues (≤ 5) are dominant in the energy spetrum in all the

motions. However, in our simulation, the space spanned by those relatively smaller

eigenvalues are still essential in producing the reference motion and to recover from

perturbations. Although we can observe several gaps in the distribution of eigenval-

ues, we are not able to use them as a guidance for choosing the unactuated space.

A more thorough analysis of the characteristics of the eigenvalue distribution in the

future can provide more insights on the underlying mechanisms of our method.

28



Figure 2: (a) The character fails to track the walking motion with a single dynamic
constraint in the most important coordinate. (b) The character fails with 16 dynamic
constraints. (c) The character tracks the the walking motion with 12 dynamic con-
straints. (d) The character fails to recover from a mild push to the right arm with 12
dynamic constraints.
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Figure 3: Eigenvalue distributions of several motions across individuals and activities.
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(a) Energy distribution of all 24 eigenvalues.

(b) Energy distribution of the smaller eigenvalues.

Figure 4: Distribution of energies of the eigenvalues in log scale.
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3.6.2 Response to perturbations and recovery.

Our first experiment applied the same external force on different body parts of a

1.7m, 80kg male character during different phases of a normal walking sequence. The

results show that the same push incurs a larger response during the single support

than the double support. Moreover, the character exhibits more stability when the

push is applied on the same side of the supporting leg. When pushed on the arms, the

character reacts more compliantly than when pushed on the head or shoulder (Figure

5). The second experiment tested the effect of different external forces directions.

The character has a harder time recovering from a backward push than a forward

one, indicating that his torso actuation is asymmetric along the sagittal direction.

In addition to producing highly coordinated reactions, our method also preserves

individual styles. We demonstrated that the large-scale arm movement of a female

character (1.5m, 40kg) is preserved in her reactive motions. We scaled the magnitude

of the external forces proportionally to the female subject’s weight.

Our method also allows the user to interact with the character by perturbing the

root movement. To illustrate this, we simulated the reaction of the character stepping

on a fast moving platform. As the root accelerates abruptly, the character’s upper

body reacts passively and gradually recovers to the original motion pattern.

(a) Head (b) Left shoulder (c) Right arm

Figure 5: Perturbations (indicated by red arrows) on different body parts
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3.6.3 Styles.

The coordinates in the actuation space encode muscle usage and coordination specific

to the input motion. As a result, each motion sequence reacts to the unexpected

perturbations with a unique style. We applied the same set of external forces to normal

walk, backward walk, and sneaky walk performed by the same male character (Figure

6). In comparison to other motions, the normal walk exhibits higher coordination

among the upper body as it counteracts the disturbance using the torso and both

arms simultaneously. The backward walking motion exhibits higher stability against

a forward push but responses compliantly to a backward push. In the sneaky walk,

the character maintains a more stable posture with the center of mass position lower

than other motions. The results show that the same amount of force induces smaller

responses on a sneaky walk.

(a) Forward walk (b) Backward walk (c) Sneaky walk

Figure 6: The character recovers from a backward push while performing different
activities.

To compare the actuation among styles of individuals, we extracted the near

unactuated coordinates of one individual performing a normal walk, and applied

them to simulate another individual’s normal walk under perturbations (Figure 7).

The results show that plausible reactive motions can be generated only when the two

individuals have similar weight and height. We also conducted similar experiments
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for different action styles. The actuation of a sneaky walk reproduces a normal walk

faithfully without disturbances, but generates unrealistic response when perturbed.

(a) (b) (c) (d)

Figure 7: Different actuation spaces applied on the same walking motion under a
forward push. (a) Reference response. (b) Using actuations from another individ-
ual of similar build performing a similar walk, the character responses to the push
and recovers. (c) Using actuations from another individual of considerably different
build, the character cannot recover from the push. (d) Using actuations from the
same individual but performing a sneaky walk, the character produces an unrealistic
response.

3.6.4 Additional objectives.

Our formulation allows the animator to include additional objectives to enforce kine-

matic properties of the input motion. For example, we captured a walking sequence

with the subject holding a cup in his right hand. During motion synthesis, an addi-

tional objective was added to keep the cup in an upright orientation. The asymmetri-

cal muscle usage in the left and the right arms results in many interesting behaviors.

When the character is pushed on the right arm, he maintains the orientation of the

cup by rotating his torso to compensate for the movement of his right arm (Figure

8(b)). In contrast, when the left arm is pushed by the same force, he stiffens his torso

to reduce its movement and the impact on the right arm (Figure 8(c)).

Similarly, we added an objective that repels the character from the obstacles in

the environment. If the character fails to completely avoid the obstacles, an external
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(a) (b) (c)

Figure 8: The character recovers from a push while holding a cup in his right hand. (a)
The character tilts the cup in response to a push on his right arm. (b) The character
holds the cup upright during recovery when an objective is added to maintain the
orientation of the cup (yellow arrow). (c) The character stiffens his torso in response
to a push on his left arm so that the impact on the cup is reduced.

force is applied at the site of collision (Figure 1 right).

3.6.5 Static balance

Our method also works on other periodic motions such as Tai-Chi forms. Although

the Tai-Chi motion requires higher overall internal torques than other locomotion se-

quences (only 5 near-unactuated coordinates), the highly actuated coordinates mostly

lie on the frontal plane. Moreover, the torque usage of arms in the Tai-Chi motion are

highly correlated. As a result, the character reacts to perturbations on the sagittal

plane with both arms moving fluidly (Figure 9).

3.7 Alternative formulations

There are two alternative formulations to our problem. One variation is to subtract

the mean joint torques before we perform eigen decomposition to identify the null

space, which we name mean actuation. The other variation is to reduce the dynamic

model from the standpoint of dimensionality reduction in the joint motion space. We

will discuss them in more detail here.
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Figure 9: The character responses to a push while performing a Tai-Chi form.

3.7.1 Mean actuation

The first formulation shifts the torque space to its center by subtracting the mean

value ū from joint torques. Performing eigen decomposition on the mean subtracted

torques will result in a new set of near-unactuated coordiantes Ê′.

In online motion synthesis, the dynamic constraint in Equation (6) needs to change

accoordinly to the following.

CD ≡ Ê′
T
ut(q, q̇, q̈, f) = Ê′

T
ū. (13)

This formulation essentially applies a constant mean actuation Ê′
T
ū to the other-

wise unactuated space. Because Ê′ and Ê normally span different spaces, the mean

actuations are not very small numbers in our motions. However, we do not observe

qualitatively different behaviors between the mean actuation and the unactuated for-

mulations. We hypothesize that as long as a subspace of torques does not adapt to

perturbations, we will observe qualitatively similar coordinated responses.
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3.7.2 Dimensionality reduction in motion space

The second formulation considers dimensionality reduction in the joint motion space.

The system dynamics is accordingly projected to the low dimensional motion space

1.

We can decompose the motion space into a rank space B̌24×(24−l) and a null space

B̂24×l by applying eigen decomposition to the covariance of Q̄ as we did in Equation

(5). The joint configuration q̄t can be completely represented by a low dimensional

motion vector s such that

q̄t = B̌st, t = 1, 2, · · · , T. (14)

Taking time derivatives on both sides gives rise to the mapping of velocities. That is,

velocities should lie in the same motion subspace.

q̇ = B̌ṡ. (15)

We denote the generalized torques that correspond to s as τ . From Equation (15)

and the principle of virtual work, we can derive the mapping between u and τ as

τ = B̌Tu. (16)

The form of Equation (16) seems to suggest that B̌ and Ě may correspond to the

same space. Intuitively, B̌ and Ě are both reduced torque spaces that can sufficiently

generate the motion q. While Ě is constructed to be the smallest space, however, it

is not obvious whether B̌ is also the smallest. In other words, we question whether

the motion space and the torque space are of the same dimension 2. Our intuition is

that the motion space is possible to be larger than the torque space. For example,

the torque space of a passive system is an empty space, but the corresponding motion

space can be of full rank. The rationale behind is that as torques span a larger space,

1Professor Emo Todorov pointed out this approach in a discussion.
2Jie Tan pointed out the difference in dimensions during a discussion.
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the motion should be more structured and span a smaller space. Therefore, we can

deduce that Ě is a subspace of B̌, and thus B̂ is a subspace of Ê. We can also prove

B̂Tu = 0.

This result suggests that we can also use joint motions to identify an unactuated

subspace. In theory, this subspace is probably lower dimensional than the one iden-

tified from torques, thus may result in less compliant motions when perturbed. In

practice, it is difficult to tell from data the true dimensions of Ê and B̂ due to the

presence of noise. In fact, previous work of dimensionality reduction in walking mo-

tion discover a much larger null space than what we are using in this work. This may

be explained by the fact that Ê is computed through inverse dynamics, thus suffered

from the exaggerated noise in accelerations computed from finite difference, and the

modeling error in the skeleton. B̂ seems like a better choice in practice because it is

less sensitive to noise and does not depend on the estimated mass distribution of the

skeleton.

3.8 Discussions

Our approach uses inverse dynamics methods and principal component analysis, both

of which are known to be sensitive to input noise. Fortunately, our method does not

directly apply the computed torques to simulate motion but only uses them to derive

the actuation space of the input activity. We tested the robustness of our method

against data noise by randomly selecting different cycles from the input motion. The

results show that sporadic noise in the motion has negligible effect as long as the

input motion contains sufficient clean data.

Independent component analysis (ICA) is also a useful tool in discovering features

from data. We do not use it in this work because we are interested in identifying the

space as a whole rather than understanding the individual source of variations. In

the future, we would like to explore a sensible parameterizations of the actuation
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space using ICA or other learning methods to associate the synergies with functional

capabilities.

We have found that our technique works better when the input motion has rela-

tively low velocity. When tested on a high-speed turning motion, our method produces

visually stiff responses. We believe the major cause of failure is that the eigenval-

ues computed from the turning motion are significantly higher, indicating most of

coordinates are highly actuated. Enforcing the same number of dynamic constraints

(k = 10) resulted in overly passive motion that fails to track the original motion.

However, using fewer dynamic constraints produces overly stiff reactive motion to

perturbations.

The technique in this chapter focuses only on the upper body response and is not

suitable for large perturbations that incur the loss of balance or changes of high-level

behaviors. We anticipate that the technique can be applied to the whole body motion

if we can accurately measure the ground contact forces. One possibility is to estimate

the ground contact forces from motion capture data using the method described by

Liu et al. [78]. Another promising future direction is to combine our technique with

sophisticated balance controllers that determine the lower body and root movements.

In the next chapter, we will describe an algorithm to derive robust full body

balance controllers from motion capture sequences. The controllers can adapt the

sequences to various dynamics environments.

39



CHAPTER IV

LOCOMOTION CONTROL WITH OPTIMAL FEEDBACK

This chapter describes a technique that adapts a motion capture sequence to virtual

environments with large-scale physical perturbations in real-time [139]. We propose

an abstract dynamic model to describe the dynamics of any given input motion, and

automatically derive an optimal feedback controller that adjust the motion of the

abstract model as well as the completion time of the motion on-the-fly in anticipation

of changes in the long-term goal (Figure 10) and at the presence of unexpected pushes.

An online optimization interactively reconstruct the full body motion that retain the

styles of the input and respect the motion of the abstract model. We applied our

algorithm to a wide range of motions including different styles of walking, running,

and squatting. The resulting controllers are robust to large perturbations and changes

in the environment.

Figure 10: The character adjusts a large step to walk up a staircase of 0.1m height.
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4.1 Motivations

Within the computer animation community, the primary technique for real-time adap-

tation of a motion sequence to physical interactions is motion tracking via feedback

control algorithms. Strict motion tracking, however, is often an undesirable behavior

when the performing character experiences a large perturbation, or is acting in a new

environment. People anticipate potential future interactions, and may also re-plan

their movements as the environmental situation dictates. In addition, human move-

ment is governed by biomechanical and physical principles that strongly influence the

shape and trajectory of the actions taken. In contrast, the goal of current feedback

control algorithms for motion tracking is strictly adherence to the reference motion

itself. Consequently, they often produce unnatural looking results when they need to

recover from strong deviations from the original motion.

In this chapter, we describe a new approach to design feedback controllers robust

to perturbations in the virtual world. We seek to design a controller that allows

for online re-planning of long-term goals and incorporates an accurate nonlinear dy-

namic system with high-level balance strategy. Our formulation of motion tracking

as an optimal control problem provides two key advantages over previous tracking

controllers. First, our controller respects the final goal state and is flexible to adjust

the completion time. Its ability to modify the final goal state and completion time

produces strategies with anticipatory and replanning behavior. Essentially, the con-

trolled character can “see” the change of the environment ahead of time and adjust

the control forces properly in advance. Second, incorporation of a nonlinear dynamic

system provides more accurate estimates of the control outcome, and a high-level

balance strategy would ensure robust behaviors. As a result, our controller can per-

form well with large feedback errors. The combination of these improvements enables

our control algorithm to generate realistic and robust adaptations from a reference

motion to widely varying conditions.
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While optimal control theory offers useful tools for solving feedback controllers

for a variety of problems including those with final constraints and flexible comple-

tion time, our particular problem poses unique challenges. Our feedback controller

requires the solution of a two-point boundary optimal trajectory problem, which is

known to be very difficult for large nonlinear dynamic systems. The nonlinearity and

complexity of human motion makes a full-body formulation impractical. A practical

alternative is to formulate a linear quadratic regulator (LQR): a linearized dynamic

system with quadratic objective functions. However, this simplification cannot han-

dle higher-order objectives such as angular momentum regularization, which is an

important biomechanical principle shown to be essential for balance. Moreover, the

linear approximation of dynamics fails rapidly for large state errors. To deal with

these issues, we designed an abstract dynamic system that expresses fundamental

aspects of human motion, especially the relation between contact forces and angular

momentum, and is still manageable by existing trajectory optimization techniques

such as differential dynamic programming (DDP).

The abstract dynamic model takes global motion, including center of mass position

and linear and angular momentum, as state and contact forces as control. A control

policy of this model addresses one of the most fundamental problem in human motion:

the relation between the under-actuated degrees of freedom and the contact forces.

With no assumptions of the underlying kinematics structure, our abstract model is

generic enough to represent any motions that utilize contacts.

Our method greatly enhances the capability of one single motion capture sequence

under different dynamical conditions. Results show that our controller performs ro-

bustly for different types of motion, including a normal walk, a big stride walk, a

wander with random turns, a squat exercise, a run, and a hop. Our controller consis-

tently produces natural responses to dynamical and environmental perturbations.
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4.2 Overview

The input to our algorithm is a reference motion sequence Q̄, and the output is a

real-time motion controller that tracks the input motion and allows for both passive

responses to perturbations and active re-planning of goals. As illustrated in Figure

11, our algorithm consists of an offline optimization and an online simulation. The

offline optimization solves an optimal feedback controller for the abstract model. The

online simulation then uses the controller to simulate motions for the abstract model,

and synthesizes full-body motions that are dynamically consistent with the abstract

model and kinematically consistent with the reference.

feedback
control

abstract model
simulation

full pose
reconstruction

x
 fe

q

f̂

Q̄

DDP control
optimization

X*,F*

X̄

Offline Online

Figure 11: Algorithm overview.

In the offline optimization, we use DDP to solve an optimal control problem for the

abstract model. This control problem uses minimum angular momentum and control

forces to reproduce the reference trajectory of the abstract model X̄ computed from

Q̄. The solution is a trajectory of control forces F∗ and the corresponding motion

trajectory X∗. In addition, we derive a feedback controller that optimizes the same

problem in neighboring trajectories of X∗ and allows for changes in motion timing

and the final state.

During online simulation, users can apply external forces f e to the simulator, or

change the environment on-the-fly. The feedback controller will automatically adjust
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the control forces f̂ and timing to account for any deviations in states, changes of

the final state, and differences in contact positions from the reference motion. The

resulting motion x will robustly respond to the user supplied stimuli while maintaining

the desired course of action. Finally, we use an optimization to reconstruct the

full body motion q in every frame by matching the abstract model motion x with

minimum deviation to Q̄.

4.3 Abstract model

The abstract model is showing in figure 4.3. Its state variable x is defined as the global

motion of the character and the control variable is defined as the contact forces F.

The global translational motion can be described by the position of the center of

mass (COM), C, and linear momentum P and angular momentum L. We also want

to represent the global orientation, but it cannot be directly computed from COM,

so we approximate its effect with the integral of angular momentum Φ:

Φ(t) = Φ(t0) +

∫ t

t0

L. (17)

Φ(t0) is simply set to zero.

The state variable of the abstract model is then defined as

x =










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
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

. (18)

The dynamic equation of the abstract model can be expressed in Equation (19).

ẋ = Ax + B(x, t)F + G, (19)

where
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Figure 12: The entire character is reduced to an abstract dynamic model about its
COM. The blue dot represents the position C, the green arrow and the orange arrow
represent the linear momentum P and the angular momentum L respectively. Contact
forces F are exerted on the contact points c on the feet.
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,

G12×1 =

[

0 Mg 0 0

]T

,

where g is gravity, M is the total mass of the system, and × denotes the skew-

symmetric matrix form of a vector. The number of contacts p and their positions

c(t) are time-varying parameters determined by the input motion. As a result, the

width of B(x, t) depends on the number of contact points p at the time t in the input

motion.

Our dynamic system is still nonlinear because of the product term of state and

control. Nonetheless, without any further approximation or linearization, this ab-

stract model significantly improves the convergence in control optimization described

in Section 4.5. The problem would be otherwise impossible to solve for a full-body

dynamic system. In addition, the generic representation of the abstract model enables

a wide applicability of our feedback controller.

4.4 Optimal Control

Our goal is to derive a controller that is robust for a wide range of states around the

reference trajectory and also reflects important properties in natural human motion

such as minimum effort and regulating angular momentum to maintain balance. We
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formulate an optimization problem with the desired objectives, so that we can ap-

proximate a feedback control policy for the neighboring states around the optimal

solution.

Given a reference trajectory X̄ extracted from Q̄, we want to solve an optimal

trajectory that respects its initial and final states. Incorporation of a final state

constraint provides several benefits. First, it allows us to break down a long sequence

into shorter segments and concatenate them seamlessly. Second, it explicitly enforces

the motion to stay in balanced states. Third, it enables replanning of the final goal on

the fly. To improve the robustness and naturalness of the control policy, we minimize

angular momentum and control forces in addition to tracking the reference motion.

From the optimal solution of this optimization problem, we obtain an online feedback

controller for the neighboring states around the solution.

Equation (20) summarizes the optimization problem.

min
X,F

∫ tf

t0

(‖F(t)‖2W1
+ ‖x(t)‖2W2

+ ‖x(t)− x̄(t)‖2W3
)dt

subject to ẋ(t) = Ax(t) + B(x(t), t)F(t) + G,

F(t) ∈ K,

Ψ(x(tf )) = x(tf )− x̄(tf ) = 0,

x(t0) = x̄(t0), (20)

where tf indicates the final time of the input motion. The contact forces are unilateral

and constrained by their friction limits approximated by the friction cone K ([3]).

W1,W2, and W3 are diagonal weighting matrices for force minimization, angular

momentum minimization, and tracking, respectively. Determining the weight is trivial

for the abstract model. We will report the weights in Section 4.7.

We apply Differential Dynamic Programming ([56, 41]) to solve this fixed-time

continuous optimization. The final constraint is incorporated by augmentation with
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a Lagrangian multiplier µ in the objective function.

V = µT Ψ(x(tf)) +

∫ tf

t0

(‖F‖2W1
+ ‖x‖2W2

+ ‖x− x̄‖2W3
)dt. (21)

We initialize the controls using inverse dynamics of the reference trajectory, assum-

ing this initial guess is close to a global solution. We follow the procedure described

in Chapter 2.5 in Jacobson and Mayne [56] to solve this optimization. The midpoint

method is used to numerically integrate the solution at each discrete time step. The

solution {X∗,F∗, µ∗} satisfies Ψ = 0 by construction.

4.5 Optimal Feedback Control

In online simulation, we can apply the control force F∗ to obtain exactly X∗ with

Ψ = 0. However, in the case of perturbations, such as pushes or changes in the

environment, we need to adjust the control forces such that they still optimize V at

the perturbed states. We use a first-order approximation to approximate the first

derivatives of the perturbed states around {X∗,F∗, µ∗}. Because first derivatives

vanish at the solution, we get a linear feedback control policy. To produce a more

robust and flexible controller, we in addition allow the final time to change, then our

feedback control becomes a linear combination of small changes in x, µ and tf :

δF = Kxδx + Kµδµ + Ktδtf . (22)

The time varying gains Kx,Kµ, and Kt can be computed from X∗ and F∗ (details in

Appendix A).

If we can evaluate the deviation δx, δµ, and δtf , we can use the control policy

(Equation 22) to compute the deviation of control force δF. The relation of δx, δµ,

and δtf is expressed in two linear equations derived from the linearization of the

first-order optimality condition Vµ = 0 and Vtf = 0:

δVµ(X∗, µ∗, t∗f ) = Vµx(tc)δx + Vµµ(tc)δµ + Vµtf (tc)δtf = 0 (23)

δVtf (X
∗, µ∗, t∗f ) = Vtfx(tc)δx + Vtf µ(tc)δµ + Vtf tf (tc)δtf = 0 (24)
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4.5.1 Change of final time

In a fixed-time controller where δtf = 0, the reference time index tc is the same as the

elapsed time index t. We can simply compute the deviation in the current state as

δx = xt − x∗

tc
. However, in a free-final-time controller, tc changes with the final time

rather than incrementing along with t. At each time step, we estimate the remaining

time tf − tc based on δx and compare the new final time with tf to get δtf . This

dependency between δx and tc requires us to solve them simultaneously ([108]).

We first derive the relation between δx and δtf from Equation (23) and Equa-

tion (24) as:

δtf =Kdδx,

Kd =
Vtfx − Vtf µV

−1
µµ Vµx

Vtf µV −1
µµ Vµtf − Vtf tf

, (25)

where Kd is evaluated at tc. We then approximate δx at x∗

tc
as:

δx = (xt − x∗

tc
)− ẋ∗

tc
(t− tc)h, (26)

where h is the time step.

It is easy to see that δtf = (t − tc)h, the change in final time is the same as

the change in the current reference index. Arranging terms in Equation (25) and

Equation (26), we get Equation (27):

(t− tc)h =
Kd(tc)

1 + Kd(tc)ẋ∗

tc

(xt − x∗

tc
). (27)

We can precompute Kd for all the time indices in the input motion offline and enu-

merate the entire sequence online to find a tc that best satisfies Equation (27). Given

tc, We can compute δtf and δx, and compute δµ from either Equation (23) or Equa-

tion (24).

4.5.2 Change of final constraint

In addition, we derive the relation Vµ = Ψ from Equation (21). If we take derivative

on both sides: δVµ = δΨ, we can change the final constraint value by substituting

49



the desired change δΨ in Equation (23). In our case, because Ψ has no explicit

dependence on time, δΨ is simply ∆Ψ. Equation (25) and Equation (27) then become

the following:

δtf = Kdδx + Kc∆Ψ, (28)

(t− tc)h =
Kd(tc)

1 + Kd(tc)ẋ∗

tc

(xt − x∗

tc
) +

Kc(tc)

1 + Kd(tc)ẋ∗

tc

∆Ψ, (29)

where

Kc =
Vtf µV

−1
µµ

Vtf µV −1
µµ Vµtf − Vtf tf

.

We again precompute Kc offline and specify ∆Ψ on the fly. A nonzero ∆Ψ changes

the value of tc, thus affects both the state and the final time. For example, when we

change the desired final position of COM, the character will replan her motion as well

as the completion time.

4.5.3 Contact force correction

Because the contact position in the dynamics system is prescribed for a fixed length,

we cannot use the elapsed time to index B(x, t) when the final time changes during

simulation. The reference index tc is not a good candidate neither because it will cause

discontinuity in contact when jumping back and forth in time. We need another time

index td that tracks the current time of the dynamic system. Initially, td is the same as

the elapsed time. When the final time changes, we warp the remaining time according

to the current tc, and advance td with a different ratio than the elapsed time. After

every time step, we increment td by ∆ =
tf−htd
tf−htc

. If td and tc are the same, ∆ = 1 and

td advances at the same speed as elapsed time. When tc jumps ahead or lags behind,

∆ adjusts accordingly to catch up with tc.

When tc is different from td, the dynamic system used to compute control forces

can be different from the dynamic system used for forward simulation. Direct appli-

cation of the feedback control forces in simulation might cause inconsistent contact
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situation. We circumvent this issue by using a method similar to Muico et. al. [89],

which matches the results of control (i.e. ẋ), rather than the control force itself. A

simple quadratic programming (QP) solves this problem:

min
F̂

‖ẋ(xt, F̂, td)− ẋ(xt, F̄, tc)‖
2

subject to F̂ ∈ K, (30)

where F̄ = F∗ + δF. Finally, we can use the solution F̂∗ as control to simulate xt+1,

and then we update t and td to the next time step.

4.6 Pose reconstruction

The goal of pose reconstruction is to produce a full-body pose similar to the input

motion sequence and consistent with the dynamics of the abstract model. At each

time step, we formulate an optimization to solve for a new joint state that matches the

linear and angular momentum produced from the simulation of the abstract model.

We only solve for joint velocities and use explicit Euler to update the joint configu-

rations as qt = qt−1 + hq̇t−1. The optimization is then simplified to a QP problem.

The objective function tracks the joint velocity and the foot velocity in the warped

reference motion. We need to specifically track the foot motion so that it is consis-

tent with the contact positions prescribed in the abstract model. The optimization

problem is defined as follows:

min
q̇t

w1‖q̇t − g1(Q̄, tc, td)‖
2 + w2‖Jc(qt)q̇t − g2(Q̄, tc, td)‖

2

subject to J(qt)q̇t = x̂t, (31)

where Jc is the Jacobian for foot contacts, J is the Jacobian of linear and angular

momentum, and x̂t denotes momenta from xt. g1 and g2 compute the desired joint

velocities and foot velocities respectively by warping the reference motion. w1 and

w2 are two scalar weights that balance between these two objectives. We will discuss

the selection of them in Section 4.7.
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4.6.1 Trajectory warping

Due to the change in final time, we need to warp the remaining trajectory in time

based on the estimated remaining time (Figure 13). Function g1 takes the reference

motion Q̄, warps it according to tc, then compute the warped velocity ˙̄q′ at td. It also

tries to correct pose errors in the next time: g1 = ˙̄q′

td
+ 1

h
(qt − q̄td). Here we exclude

the global translation and rotation degrees of freedom in g1 because the global motion

is determined by the abstract model. Likewise, g2 computes the desired velocities for

both the support foot and the swing foot.

4.6.2 Perturbation

When the character receives additional external forces Fe such as a push, the control

policy does not respond immediately until the abstract state changes at the next time

step. However, the perturbed state may not respect the contacts. To help maintain

contacts and balance during perturbations, we allow adjustments in the contact forces

to incorporate Fe. We solve for both q̇t and F using Equation (32) when Fe is present

and switch back to Equation (31) when Fe is removed.

min
q̇t,F

w1‖q̇t − g3(Q̄, tc, td,F
e)‖2 + w2‖Jc(qt)q̇t − g2(Q̄, tc, td)‖

2

+ w3‖F− F̂‖2

subject to J(qt)q̇t = S(xt−1,F
e,F). (32)

This optimization modifies Equation (31) on three counts. First, because the

control force F is also a free variable, we express the desired momenta x̂t in terms

of the simulation function S which integrates F and the push Fe from xt−1. Second,

we add one additional term to match F to the control forces F̂ computed from the

feedback controller. w3 weights how much to change the control compared to the

tracking objectives. Third, we synthesize the impact of the push on local body parts

using function g3. It imposes the generalized impulse induced by Fe in each joint
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Figure 13: Our algorithm keeps track of the remaining reference trajectory and lin-
early warps it in time according to tc. Initially, t and td both starts from zero and
advance at the same rate. Second row: at frame 20, the character is pushed forward
and tc jumps forward to 25. The remaining trajectory in shortened from 40 frames to
35. Third row: 10 frames later, t reaches 30 but td is at about 31.5 due to warping.
The character now receives a backward push that delays her for 10 frames from the
reference. tc jumps back to 20 and the remaining trajectory again is warped to 40
frames. The reference velocity is computed for the warped trajectory at td.

coordinate: g3 = ˙̄q′

td
− hM−1(qt)J

T
e (qt)F

e, where M is the inertia matrix and Je

is the Jacobian of the contact point. This optimization has nonlinear constraints

due to the simulation function. We solve it by formulating a sequential quadratic

programming (SQP) using SNOPT [42].

4.7 Implementation details

In this section, we describe a few design choices and implementation details.

4.7.1 Concatenate Controllers

Although we can solve a motion of any length, in practice, we break down a long

sequence into shorter segments, derive feedback controller for each segment, and con-

catenate them in simulation. A shorter sequence can be solved more easily and
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efficiently in the offline optimization. In addition, to fully take advantage of our abil-

ity to change final-state on the fly, the final state of each short sequence coincides

with a key event in the input motion. For example, to generate down-stair walks, we

segment a normal walk at double support phase and optimize a controller for each

step. During online simulation, the final COM position is lowered for each controlled

segment to guide the character walk down stairs.

To create seamless transitions from controller A to controller B, we translate the

reference motion and contact positions of controller B to the desired final goal of

controller A. We also linearly warp the swing foot trajectory to meet the new contact

points. The same procedure can also generate walks with longer or shorter steps.

Breaking down a long sequence may introduce artificial intermediate constraints

and require larger forces to meet them in a short duration. Fortunately, we can remedy

these problems by overlapping controllers in time and allow the control index tc to

jump across boundaries. For instance, when we overlap two consecutive controllers A

and B by 20 frames, we can start to use controller B anytime during these 20 frames

in online simulation. An early transition produces smoother motion by discarding

the final constraint of controller A and carrying the state errors to controller B, while

a later transition respects the final constraint of controller A better. Likewise, when

tc jumps beyond the range of the current controller (i.e. Equation (27) cannot be

satisfied), we continue to search the optimal tc in the neighboring controllers. For

example, suppose controller B is currently in use and the perturbation causes tc to

jump to an earlier frame beyond the first frame of controller B. In this case, we use

the best gain from controller A and let it take control until tc jumps back to the

range of controller B again. The overlapping period and transition timing could be

adjusted for different motions.
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4.7.2 Weight Objectives

Our algorithm requires tuning of only a handful of objective weights. For the offline

optimization (Equation (20)), we set the weight matrix W1 to identity matrix, and

set W2 and W3 as follows:

W2 = wa
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
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In our examples, wa and wt are both set to 500 for normal walk and long stepping,

and they are 200 and 20 for squatting. In general, larger value of wa produces a more

robust control policy, at the expense of possible larger tracking errors. Although

our experiments show that a wide range of weights produce similar results, we plan

to investigate inverse optimization techniques in the future to automatically design

objective functions that give rise to a given reference trajectory.

The two online optimizations (Equation (31) and Equation (32)) have only three

weights in total. We use w1 = 1, w2 = 5, and w3 = 0.01 in all the examples. With

w1 and w2 fixed, w3 controls how much to alter the optimal control force in order

to satisfy the contacts and tracking. Larger value of w3 makes the motion more

compliant to the push, but also more difficult to recover.

4.7.3 Correct Numerical Drift

Our simulation of the abstract model is physically correct up to the second-order

integration error. However, matching both the COM position and momenta in the

full-body pose creates an infeasible optimization problem because we solve for only

the velocity and use explicit Euler to compute configuration. In other words, when

a full-body state has the same linear momentum as the abstract state, it could still

produce a different COM position at the next time step. We prevent the accumulation
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of this numerical error by feeding back the full-body COM position to the abstract

model so that the feedback control will try to correct it at every time step.

4.8 Results

We demonstrate the robustness of our algorithm by building controllers for a variety

of input motions. We test the feedback control policies by applying arbitrary external

forces to the character, and by altering the physical properties of the environment,

such as the terrain geometry and surface friction.

4.8.1 Performance

We test our algorithm on a 2.8GHz Intel Core 2 Duo processor. We use motions

captured at 120 Hz as input and use the same frequency for simulation. The offline

optimization usually converges within 10 iterations. The actual computation time

depends on the length of the motion. It takes about a minute for 60 frames of ani-

mation. For online simulation, we use a character model with 42 degrees of freedom,

and the simulation runs at 20 frames per second on average.

4.8.2 Change of final time

A change in completion time happens almost every time a perturbation is encoun-

tered. An obvious case is when a character receives large pushes that disrupt her

motion. For example, in a normal walk, a large backward push slows down a step by

10 frames while a small forward push accelerates the step by 2-3 frames. When the

character receives multiple pushes, she is able to adjust her pace repeatedly on the

go. In another example when the character walks upstairs of 0.2m height, the final

time is lengthened by 4 frames, and it is shortened by 4 frames for walking down.

Similarly, it takes 4 frames longer for a 0.05m larger step, and 17 frames faster for a

shorter step. We observe similar results of timing adjustments on other motions.

A flexible plan for completion time generates more natural and robust motion.
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(a) With flexible final time (b) With fixed final time

Figure 14: The controller with flexible completion time produces more stable motion
than the controller with fixed completion time after a large backward push.

We compare our controller to a fixed-time controller on a walking motion. In the

case of small pushes, our controller always produces more stable motion with smaller

contact forces. For larger pushes, the character in our motion adjusts her walking

speeds to recover and is finally able to complete the step, while the fixed-final-time

motion failed to recover the walk (Figure 14).

4.8.3 Change of final constraint

The ability to re-plan final constraint on-the-fly makes it easy for our controller to

adapt to new environment and generate a larger variety of motions from a single

reference. In the first experiment, we derive an optimal feedback controller for a

normal walk on flat terrain and successfully apply it to walking on stairs with different

step height ranging from +0.3m to −0.2m. For walking upstairs, we change the final

goal at the beginning of double support, and the character can raise her COM by

as much as 0.3m during the double support phase. Walking down stairs is a more

challenging task for our controller. The character has to twist her torso to reach the

new contact points and to compensate for the angular momentum of the lower body.

By simply changing the final state at the start of each step, the same controller can

produce walking downstairs up to 0.2m per step.
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(a) With flexible final constraint (b) With fixed final constraint

Figure 15: The controller with anticipation of changes in the final constraint produces
more natural motion than the controller driven by errors in the final constraint for
walking upstairs of 0.2m.

We compare our results with a control policy that does not change the final con-

straint ahead of time. We first add an linear offset to the reference trajectory such

that the final state of the trajectory meets the desired height. The control forces

in this case are driven by the deviation between the current state and the modified

reference trajectory, rather than the anticipation of the change in the final state. The

character is able to walk down stairs with maximum step height of 0.1m and up stairs

with maximum step height of 0.2m, but the motions are visually unnatural in that

the COM is always lagging behind the reference (Figure 15). Further, larger contact

forces are used compared to our results.

4.8.4 Generality

Our algorithm is generic to different types of input motion. Besides a straight walking

sequence, we also apply the algorithm to a long stepping (Figure 10), a squat exercise

(Figure 16(a)), a hop (Figure 16(b)), and a run (Figure 16(c)). For each case, we apply

random pushes to the character and observe dynamic responses and adjustments of

final time. For example, when pushed backward, the long stepping takes 4 frames

longer to complete and 4 frames less for a forward push. We also repeatedly push the

character while she is performing a squat exercise. The character is able to balance
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by continuously adjust her whole body movements and the final time.

(a) Squatting (b) Hopping (c) Running

Figure 16: Our algorithm is robust across a variety of activities.

4.8.5 Robustness

We examine the robustness of our controller by supplying pushes of different mag-

nitudes, directions and durations. Our controller performs more robustly to pushes

that do not require large change of steps. In all the examples, the character can

recover from impulsive pushes (lasting less than 0.3 second) up to 200N in all direc-

tions. The controller is also robust against sustained pushes lasting for one second

with magnitude up to 40N .

We also compare our controller to one that tracks the reference motion with-

out minimization of angular momentum. For reference motions with small angular

momentum, both controllers perform similarly. For more dynamically challenging

motions such as the long stepping, our controller exhibits better stability to small

perturbations, and it can recover from extreme cases when the tracking-only con-

troller fails. In all the tests, our controller always uses less control forces than the

tracking-only controller.
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4.9 Discussions

Abstraction of the dynamic model greatly facilitates solving the optimization problem,

but it also ignores the biomechanical constraints of the skeleton. Consequently, the

feedback control may generate kinematically impossible COM motions. Incorporating

inequality constraints on the abstract states to ensure a reasonable COM position

could help alleviate this problem.

The abstract dynamic model described in this chapter intelligently utilizes exter-

nal contact forces to control the character’s motion, thus allows for robust control

algorithms. However, its dependency on prescribed contact positions largely limits

the its flexibility. Because the contact points are not part of the dynamic states, we

cannot model the change of contacts using controls. Consequently, we can only model

static frictional contact but not sliding or rolling contacts. Moreover, our controller

is not able to produce different step taking behaviors from the reference, nor can it

handle motions with sporadic contacts such as sparring. In the future, we want to

incorporate long-term contact planning ([128]) as a separate routine in our algorithm.

With the ability to plan contacts for future events, we will be able to, for example,

produce ballistic motions that prepares for a safe landing when perturbed.

In the next chapter, we will explore sampling techniques for planning contacts

in complex dexterous manipulation tasks. Similar to the abstract model, the objects

being manipulated completely rely on external contact forces (mostly from the hands)

to propel themselves. This dynamic constraint is leveraged to generate contact points.
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CHAPTER V

OBJECT MANIPULATION SYNTHESIS

Capturing human activities that involve both gross full-body motion and detailed

hand manipulation of objects is challenging for standard motion capture systems. In

this chapter, we introduce a new method for creating natural scenes with such human

activities. The input to our approach includes full-body motion and object motion

acquired simultaneously by a standard motion capture system, and our method au-

tomatically synthesizes detailed, expressive, and physically plausible hand motion

(Figure 17). Instead of producing one “optimal” solution, our method presents the

user a set of hand motions that exploit a wide variety of manipulation strategies and

seamlessly integrate with full-body and object motion. Our results highlight complex

manipulation strategies human hands employ effortlessly and unconsciously, such as

static, sliding, rolling contact, as well as discrete relocation of contact points and

finger gaiting.

5.1 Motivations

Full-body human motion synthesis that contains detailed hand-object manipulation

is a very challenging problem in computer animation. The perception of realism not

only depends on the motion on a grand scale, but also small variations in the hand

movement as it interacts with its environment. As a recent study by Joerg et al. [61]

shows, even very subtle desynchronization errors in hand and body motions can be

detected by the human eye. As a result, the level of accuracy required for generating

believable body-and-hand motion sequences raises significant challenges for existing

methods of motion tracking. Existing optical motion capture systems are unsuitable
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Figure 17: Use motion capture to record both the gross motion of the body and the
intricate motion of the fingers in a cooking scene is very difficult due to the close
interactions between the hand and the objects. Our algorithm can automatically fill
in finger movements that are consistent with the scene.

62



at simultaneous tracking of full-body motion and detailed hand motion. The resolu-

tion and camera placement suitable for full-body tracking leads to limited precision

and occlusion when focused on the hand. The most popular method in film industry

for multi-resolution tracking of body and hand is to capture the full-body motion

of the actors and manually animate the hand motion. This process usually takes

enormous effort and highly depends on the animator’s skill. Alternatively, one can

capture the same scene in multiple takes and synchronize them as a post-process[82].

Performing the same scene multiple times can be difficult especially when the scene

involves incidental contacts with the objects. Another option, is to use customized

devices, such as data gloves, to capture hand motion separately. Unfortunately, even

top of the line data gloves [1] do not provide the sufficient accuracy for hand motions

with complex physical contact. Even if we can capture accurate hand motions, the

exact data is often times undesirable in a production pipeline because the objects will

be edited in post capturing steps.

This chapter introduces a new method for synthesizing human activities with

both gross body motion and fine manipulation. Our system takes as input full-body

motion and object motion simultaneously acquired by standard mocap system, and

synthesizes a set of detailed, expressive, and physically plausible hand motions that

seamlessly integrates with the full-body motion and object trajectory. We assume that

the mocap system has sufficient resolution to capture accurate wrist motion. This

assumption is reasonable for most standard mocap systems, and yet it is crucial to the

success of our algorithm, because the palm and finger movement is highly constrained

by the wrist configuration. Having a known wrist trajectory makes the problem more

tractable. Still, given the wrist motion, there are numerous ways for the hands to

achieve the desired manipulation of objects. While continuous optimization methods

may like a very good fit for generating hand motions under these conditions, in prac-

tice they have not been able to recreate the level of complexity and diversity human
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hand motion exhibits effortlessly. In contrast to synthetic hand motion generated

by optimization techniques or rule-based procedures, human dexterous manipulation

tends to utilize different contact modes, such as static, sliding, rolling contact, as well

as discretely add or remove contact points. These distinctive manipulation strategies

raise numerous issues for conventional continuous optimization methods because the

space of contact position is highly discontinuous, and subject to nonconvex physical

constraints. Further, the design of an appropriate objective function for the desired

outcome remains a difficult challenge as the criteria for optimality is not obvious.

We develop a different approach for generating hand motions under constraints

imposed by the full-body and object trajectory. Instead of continuous optimization

over joint trajectories, we develop a discrete randomized search algorithm that ex-

plores the space of possible hand-object contact positions over time. At each time

step, the algorithm stochastically chooses a set of contact points on the objects and

determines whether this new set can be achieved kinematically and dynamically from

the current state of the hand and the object. Because the goal of our system is to

quickly generate as many complete sequences as possible while presenting a rich di-

versity in motion, we utilize a randomized depth first search strategy to explore the

trajectory space.

The key choice we made in designing our algorithm was deciding to work in the

object-contact position space instead of the joint angle space. We did so for two

primary reasons. First, reconstruction of the hand pose is straightforward once the

contact positions and input wrist configuration are determined. Secondly and more

importantly, working in this space allows us to generate plausible sequences of con-

tact positions very efficiently because the movement of contact points are highly

constrained by the contact forces. A naive sampling approach would propose con-

tact points randomly and reject infeasible candidates later. Unfortunately, testing

feasibility involves solving dynamic equations and inverse kinematics (IK), making
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Figure 18: Our algorithm synthesizes detailed finger movements for a wide variety
of objects. In the images, yellow dots are contact points between the hand and the
object. Red arrows indicate contact forces applied to the hand from the object.

the importance of generating likely feasible candidates crucial for efficient operation.

Using the current contact force as a precondition, we can constrain our search space

to samples dynamically consistent with the current contact force. For example, if the

contact force is on the boundary of the friction cone, the possible contact positions

at the next frame will lie along the opposite direction of current tangential contact

force. Empirically, the candidates proposed by this algorithm exhibit great variety

in the motion. This is because the proposed candidates are representatives of differ-

ence contact modes. Selecting candidates from this diverse pool favors motion with

frequent contact mode switching.

Our algorithm can be applied to most everyday objects and mundane manipulation

scenarios to synthesize intricate finger movements without any specialized knowledge

about the manipulation tasks (Figure 18). Our results demonstrate that a rich set

of manipulation strategies emerge when hands frequently employ different contact

modes. We show that continuous sliding and rolling contact, as well as discrete

relocation of contact points, can greatly improve the believability and aesthetics of

human motion. Our algorithm is also able to discover sophisticated finger gaiting

strategy without any prior knowledge or assumption in the search algorithm.

5.2 Overview

The input to our system is a mocap sequence of a human performing full-body motions

while physically interacting with objects in the environment. The sequence is acquired
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using a mocap system calibrated for wide-range full-body motions. The resolution of

the system is sufficient to capture the wrist and the object movements, but not enough

for fine finger movements. Our goal is to create realistic, detailed hand motions to

fill the missing gap between the full-body and the manipulated object.

Our approach is illustrated in Algorithm 1. We first search for many sequences of

feasible contact point trajectories within the computation time budget (Section 5.3),

then reconstruct the hand motion from each of the trajectories (Section 5.5).

We formulate the problem of searching for contact point trajectories as a ran-

domized depth-first tree traversal. Before we introduce our search algorithm, we first

define some notations as follows (Table 1). A level of the tree represents a time in-

stance t. A node of the tree indicates a state of the manipulation problem at one time

instance. A state s is defined by a hand pose q, a set of contact points P between the

hand and the object, and the corresponding contact forces F. A hand pose q contains

the global translation and rotation of the wrist obtained from motion capture, and

the unknown joint angles of the fingers. A contact point p is defined as a pair of local

coordinates on the surface of the object p.o, and on the surface of a finger p.h. A

contact force f is modeled by a nonnegative scalar force fn along the contact normal

n, and a tangential force vector f̂ . The contact normal n is the opposite direction

of the surface normal at the contact point. The corresponding Cartesian force is

computed as fC = fnn + f̂ .

A full state can be compactly represented as a guiding contact configuration c. c

is a small set of contact points p, each of which, called a guiding point, resides on

a distinctive finger. c contains the minimum information required to recover a full

state s. From the contact points in c, we apply IK and collision detection to obtain

q and P. From P and the motion of the object, we can solve for the corresponding

contact forces F.

Using c to represent a state greatly simplifies the search process illustrated in
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Table 1: Definition of symbols used in this chapter

Symbol Definition
q a hand pose

p.h local coordinates of a point on a finger in a contact point
pair

p.o local coordinates on the surface of the object
p = {p.o,p.h} a contact point pair

c = {pi} a guiding contact configuration

f = {fn, f̂} contact force applied to the object
n normal direction for the contact force, opposite to the

object surface normal

fC = fnn + f̂ contact force in Cartesian space
P a set of contact points between the hand and the object

in one time instance
F a set of contact forces applied to the object in one time

instance
s = {q,P,F} a state of the manipulation problem

Algorithm 2. The core of the algorithm is to explore contact configurations that are

more likely to recover a feasible state. Given a feasible state s(t−1) at the previous

level, we explore a small set of new nodes for the current level t using information

from P(t−1) and F(t−1) in s(t−1) (Section 5.3.1). Among the new nodes, we randomly

select one of them to recover its full state s. If s is kinematically and dynamically

feasible (Section 5.3.2), we move on to the next level. Otherwise, we consider this node

infeasible. When a feasible path is found, or when an infeasible node is encountered,

we backtrack to explore more solutions. In Section 5.4, we describe a few strategies

that can efficiently discover distinctive paths.

Algorithm 1: SynthesizeHandManipulation

S = {} ;
while isT imeLimitReached =false do

S(0) = {} ;

SearchContactPoints(S,S(0), 1) ; // Section 5.3

foreach S(T ) ∈ S do

qh ← ReconstructHandMotion(S(T )) ; // Section 5.5
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Algorithm 2: SearchContactPoints ( S,S(t−1), t )

C(t) ← GenerateNewNodes(S(t−1)) ; // Section 5.3.1

success← false ;
nTrials← 0 ;
while nTrials < maxBranchFactor do

c(t) ← PickOneNode(C(t)) ;

isFeasible, s(t) ← TestFeasibility(c(t)) ; // Section 5.3.2

if isFeasible = true then

S(t) ← Append(S(t−1), s(t)) ;
if t=T then

S.push(S(T )) ;
success← true ;

else

success← success|SearchContactPoints(S,S(t), t + 1) ;

nTrials← nTrials + 1 ;
return success;

5.3 Search for Contact Point Trajectories

This section describes Algorithm 2 in detail.

5.3.1 Generate New Nodes

This section describes how we generate the contact configurations c at each time

instance by sampling a set of guiding points for each finger.

5.3.1.1 Initialization

To begin the search, we need to first determine when and where a finger starts to

come into contact with the object. We utilize the captured motion of the wrist and

the object to estimate the timing and a set of sample contact points for each finger

in preprocessing. Range of motion (ROM) of a point on a finger is determined by

the wrist motion and joint limits of the finger. Intersection of the ROM volume

and the geometry of the object indicates surface patches on the object that the

finger point can reach. We choose the belly of the distal phalanx as p.h to estimate

a ROM volume, then compute interactions between the ROM and the object to
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discover contact windows when the two overlap sufficiently. For the first frame of

each window, we create uniform samples on the surface patches as p.o, and combine

them with p.h as the initial contact points for a finger. Guiding points are drawn from

this pool during the search process when a finger initiates contact with the object.

When a finger can no longer reach the object, we do not consider it in future contact

configurations. We will show later in this section that the precise timing of an initial

contact is not important. A finger can move around to find the most suitable contact

location and apply forces at the right time.

We can further reduce the number of candidate contact points using the kinematics

test described in the next subsection. The test ensures the contact point pair can be

met without penetration by solving an IK problem. We thus keep only the contact

points that pass the test. We decide to initiate contact points from the distal phalanx

because it can sufficiently determine a finger pose during IK. However, the result of

the test, as we will see later, may provide us with different finger contacts. Therefore,

our grasps are not limited to the finger tips.

5.3.1.2 Recursion

In the recursive case, we generate a set of contact configurations at level t from a

feasible state s(t−1) at level t− 1. From P(t−1) in s(t−1), we choose one contact point

p′ for each finger that is in contact as the seed for sampling. The chosen contact

point is the furthest to the palm so that it constrains more degrees of freedom for the

finger.

For each contact point p′, we fix p.h and move p.o on the object surface to create

new contact points. The corresponding contact force f for p′ determines where p.o

should be in the next time instance according to the following constraints. When the

force is greater than zero, the magnitude of the friction force determines whether the
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contact point will stay or slide in the friction direction 1. The contact point can slide

only if ‖f̂‖ = µfn, where µ is the friction coefficient. When the force is zero, the

finger can release contact in the next frame. Therefore, the contact point can move in

any direction and serves only as a guidance to position the finger. These conditions

are listed as follows.

p.o(t) =























p.o(t−1), fn > 0, ‖f̂‖ < µfn

p.o(t−1) + U(0, l1)d, fn > 0, ‖f̂‖ = µfn

p.o(t−1) + r(U(0, 2π), U(0, l2)), fn = 0

(33)

In Equation 33, U(a, b) denotes a random number generator with uniform distri-

bution in [a, b]. d is the friction direction in the object coordinates, and r generates

a random point within a circle of given radius. l1 and l2 control how much a finger

can move on the object surface within one time step. We project the directions on

the object surface to make sure the resultant p.o(t) stays on the object. In the rare

case where a finger cannot reach its guiding point at t − 1, we treat it the same as

fn = 0, except the p.o(t−1) is from the guiding point in c(t−1).

Using the above sampling scheme, we create a few new contact points for each

finger in the next frame. Figure 19 shows examples of contact points evolving over

time on the object. The new contact points serve as guiding points in the new contact

configurations c(t). The new contact configurations lead to interesting finger gaits by

allowing the finger to stick or slide on the object, and to release and re-establish

contacts, while respecting the physical constraints. Note that although we do not

change p.h in the samples, it can still change over time when p′ is different from the

guiding point p in c(t−1).

1From the object’s point of view, the contact point moves in the opposite direction of friction.
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Figure 19: Contact points change over time based on the sampling strategies.

5.3.2 Test feasibility

We consider a contact configuration c feasible if its corresponding state s satisfies two

feasibility conditions. c is kinematically feasible if we can solve for a penetration-

free hand pose q and a set of contact points using IK and collision detection. c is

dynamically feasible if we can solve for the corresponding contact forces F for P to

generate the captured motion of the object.

5.3.2.1 Kinematics

To reconstruct a penetration-free hand pose from c(t), we iterate between solving an

IK problem and resolving hand-object penetrations. c fails the test if we cannot

resolve penetration completely within the iteration limit, or if the fingers penetrate

one another.

We use a hand model with 36 DOFs (Figure 20). The six DOFs on the wrist are

given as input, and we need to solve for the other 30 DOFs. We approximate joint

limits from a motion capture sequence of a ROM exercise. Since our hand model has

no interdependencies among fingers, we can solve for the joint angles of each finger

separately.

For each finger, we formulate a nonconvex optimization to satisfy the designated

guiding contact point pair.
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min
q
‖f(q,p.h)− p.o‖2 (34)

subject to g(q,p.h)Tn(p.o) ≥ 0 (35)

|q− q(t−1)| ≤ δq (36)

f(q,p.h) in Equation 34 is the IK function that outputs the position of p.h in

the local coordinates of the object under pose q. In Equation 35, g(q,p.h) outputs

the direction of the back of the phalanx that contains p.h in the local coordinates of

the object. By constraining the back of a phalanx to face the positive hemisphere of

the surface normal n at p.o, we prevent configurations that are usually considered

unnatural. Lastly, Equation 36 prevents large change across frames to favor smooth

motions. δq determines how fast the fingers can move in a time step.

After solving for a finger pose, we need to resolve penetrations between the finger

and the object. The contact pair with the largest penetration depth is chosen as

the new target in the objective function, then we solve the IK problem again. In

most cases, a few iterations of IK are sufficient to resolve penetrations completely

and to satisfy the guiding point pair well, thanks to the incremental movements of

both the hand and the contact points. However, there are two exceptions. One is

when a contact point moves across a discrete feature of the object surface, such as

an edge or a corner. The other is when a contact point moves out of reach for the

finger. Both cases may result in a contact point pair different from the intended one

or loss of contact as a result of penetration resolution. While a different contact pair

corresponds to finger rolling, release of a contact is acceptable only when the finger

applies no force in the previous frame. Finally, we obtain a penetration-free hand

pose q from IK, and a set of contact points P from collision detection.
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5.3.2.2 Dynamics

Given the set of contact points P, we test whether they are dynamically feasible for

the object by solving for contact forces F to satisfy the captured motion. We also

solve for forces from the environment if contact points Pe are detected between the

object and the environment.

The dynamics problem can be formulated as a convex conic programming. An

infeasible problem implies the contact points are not feasible for the object.

min
F

∑

fn (37)

subject to
∑

i

JT
i (fn

i ni + f̂i) = G (38)

nT
i f̂i = 0,∀i (39)

‖f̂i‖ ≤ µfn
i , fn

i ≥ 0,∀i (40)

Equation (38) is the equation of motion for the object, where J is the Jacobian that

transforms a Cartesian force to the generalized coordinates, and G is the generalized

force of the object computed from inverse dynamics. G takes into account both linear

and angular motions as well as gravity. To ensure every f is a valid contact force, we

constrain the friction direction to be perpendicular to the contact normal (Equation

39), and be within Coulomb’s friction cone (Equation 40). For every sliding contact

in Pe, an additional constraint f̂ = µfnd is applied, where d is the detected sliding

direction. Finally, to prevent the hand from exerting excessive contact forces, we

minimize the normal forces applied by the hand (Equation 37).

Complex manipulation tasks that rely on torsions are difficult to generate from the

simplified point contact model. For a better approximation of contact phenomena,

we apply forces on a few proxy points in the neighborhood of a contact point. If

a contact point lies on a flat surface, we use two neighboring proxy points. If a

73



contact point lies near a sharp feature, we use three proxy points to capture the

local change of geometry. Features are detected by comparing surface normals in the

neighborhood. Contact forces computed at proxy points are later aggregated to the

originated contact point. In this way, contact points near sharp features have a wider

range of contact forces. For example, grasping on the edges of a box can generate a

wider variety of motions than grasping on the faces. This phenomenon is consistent

with our daily experience.

5.3.3 Expand the search tree

When a state passes both feasibility tests, we move on to search for feasible states in

subsequent levels until we reach the bottom one, in which case a feasible trajectory

is successfully discovered. If a state fails the feasibility tests, or after we finish with

a feasible path, we backtrack to previous levels and explore new trajectories. In

this way, the problem of searching for feasible contact trajectories is casted as a tree

traversal problem in a straightforward depth-first manner.

5.4 Control Solution Diversities

The baseline search algorithm is inefficient because it does not exploit the spatial

and temporal coherence in the solution space. A brute-force search wastes a lot of

computation in similar paths. In this section, we introduce four strategies that can

discover a diverse set of feasible trajectories more efficiently. They also allow users

to control the styles of the solutions and the trade off between path diversity and

success rate.

5.4.1 Sparse exploration

Sibling nodes often represent similar states. Skipping some sibling nodes can be an

effective way to reduce computation on visually similar paths. To this end, we reduce

the branching factor by making a stochastic decision whether to explore a sibling node
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or backtrack to the parent node. Specifically, if a feasible trajectory is found, there

is ǫ1 chance the search algorithm will backtrack to the previous level. If a trajectory

fails, the chance to backtrack is ǫ2. We always set ǫ1 > ǫ2 to bias finding a feasible

path first.

Similarly, we can exploit the temporal coherence in a path to reduce branching

frequency. Due to the short time duration between two consecutive nodes in a path,

their corresponding states are usually indistinguishable, no matter what actions they

take (e.g. one slides 0.2mm and the other slides 0.5mm). For a contact phenomenon,

such as sliding or moving, to be visually noticeable, the same action must be taken

by a few consecutive nodes. Therefore, if a finger has a static guiding contact in

a frame, our algorithm will prefer the same finger remains static for a few frames.

Likewise, when a finger takes a sliding action, the algorithm will let it slide or move

in the same direction for a few frames. During node expansion, we use ǫ3 to control

the probability of taking a different action from the parents action. Then during

backtracking, we only start new branches at nodes that take different actions. By

enforcing the same action over a period of time, we limit the branching frequency

and explore only paths with noticeable differences. In this way, the time complexity

is exponential to the number of decisions allowed along a trajectory rather than the

number of frames, which is controlled by ǫ3.

Users can control the sparsity of exploration by choosing the appropriate ǫ1, ǫ2,

and ǫ3 for a problem. In all our examples, we use ǫ1 = 1/2, and ǫ2 = (T − t)/(20T ),

and set ǫ3 to be approximately 10/T .

5.4.2 Node prioritization

In addition to allocating more computation in dissimilar paths, we can explicitly

control the style in a path by prioritizing contact points at each level. For example,

we can sort contact point samples by how far they are from their parents. Instead
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of picking a random contact point for each finger to form a node, we can sort the

contact points by the amount of movements they represent. By always choosing the

most static points, we obtain a trajectory with mostly static contacts. Likewise, we

can always choose the contact points with most movements to obtain a trajectory

with lots of contact changes. More interesting behavior may emerge if we assign

different preferences to different portions of a motion.

5.4.3 Informed backtracking

In backtracking, our goal is to explore a dissimilar path after successfully finding a

solution, or to correct the current failure in an earlier time. Propagating the reason

in backtracking can help us make better decisions and increase the success rate. For

example, when we arrive at an infeasible node, we can utilize the cause of failure

to start a new path that is more likely to succeed from an ancestor node. If a

path returns with IK failure on a finger, we choose a new guiding point only for the

failing finger without changing other successful ones. The new guiding point is then

chosen to be the furthest point from previous failures. Likewise, if a path reports

interpenetration between two fingers, we choose new guiding points that are far apart

for them. In addition, if a finger fails in the first frame of its contact window, we

increase the branching factor to allow more trials in finding a good initial contact

point. If a path reports failure in the dynamics test, our current algorithm simply

choose a new guiding point for each finger. We believe a thorough analysis of the

dynamics equation could help derive a better strategy.

Another scenario is when we successfully solve for a feasible path and backtrack

to explore alternatives. To choose the most different nodes in backtracking, we can

record all explored nodes as we go, and select the most distinctive ones from the

remaining pool. Because we reduce the branching factor and branching frequency,

the storage overhead is not significant.
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5.4.4 Biased force optimization

The possible branches at each level are determined by contact forces. We can explore

the redundancy in contact forces to generate different grasping styles. Equation 37

reflects our preference in distributing contact froces to fingers. A uniform weighting

scheme encourages even distribution of forces among contact points to favor a stable

grasp. We can generate different grasping styles by changing the weighting scheme.

For example, we can assign larger weights to fingers that apply no force in the previous

frame. As a result, once a finger is released, it will re-establish contact again only

when it arrives at an indispensable location to apply contact force. Another possible

strategy is to increase the weights for a finger in proportion to how long it has been

in contact. The optimal solution is then to alternate forces among fingers as if they

are restless.

5.5 Reconstruct Hand Motion

Once we solve for feasible trajectories of contact points, we can reconstruct the cor-

responding finger motions. Although we also obtain hand poses from the kinematics

test, they are usually noisy due to the randomized nature of our search algorithm. We

take two post-processing steps to produce a smooth hand motion. First, we solve a

spacetime constrain optimization problem to smoothen the hand poses. The resultant

motion, however, may introduce new penetrations when a finger transitions between

releasing and re-establishing contacts with the object, or when the hand transitions

between handling two objects in the same sequence. In such cases, we resolve the

additional penetrations using an iterative algorithm.

5.5.1 Smoothing

We solve for a smooth and natural hand motion that respects the previously solved

contact points using a spacetime optimization.
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min
qh

T
∑

t=1

E1 + wE2

subject to f(q
(t)
h ,p.h(t)) = p.o(t), t = 1, · · · , T (41)

E1 and E2 are smoothness and naturalness metrics respectively. E2 favors a

natural pose in which bending is shared among all joints on a finger. This problem

is solved efficiently by starting with the hand poses from kinematics test so that

constraints are met initially. Because we apply the IK constraints only to fingers

that exert contact forces, fingers without constraints can move freely and possibly

penetrate the object as a result.

5.5.2 Transition

From the smooth hand motion, we detect transition windows that contain penetra-

tions, then resolve them smoothly using an iterative method. In each iteration, we

first apply the kinematics test as in Section 5.3.2 to resolve all problematic frames.

The results are penetration-free but noisy. We then smooth the joint angles within

each transition window. During smoothing, the poses right before and after the tran-

sition window are fixed as boundary constraints. Poses in the in-between frames

are bounded by a small range around their current values. The resultant motion

may still penetrate the object, but the penetrations are less severe and the motion is

smooth. By alternating between IK and smoothing with gradually shrinking bounds,

we will converge to a smooth and penetration-free motion. This simple strategy works

quite well for our problems. For more complicated scenarios, we may need to employ

advanced pre-grasp planning algorithms.

Finally, we attach the resultant motions to the wrists of the character, and we

complete the reconstruction of a wide-range, detailed scene with human locomotion

and manipulation of objects.
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5.6 Results

We apply our algorithm to a variety of hand manipulation tasks, ranging from simple

lifting and turning of a box on a tabletop to a realistic cooking scene that involves

objects of different shapes as well as two-hand manipulation tasks. Our algorithm

automatically generates many possible hand motions with rich variation of details.

In addition, the user can modify the object properties, such as geometry, material, or

motion, after data acquisition process.

We use a hand model with 36 DOFs (Figure 20). The six DOFs on the wrist are

given as input and the remaining 30 DOFs on the palm and fingers are synthesized

by our algorithm. We solve the nonconvex IK optimization using SNOPT [42], and

the convex conic programming problem using MOSEK [11]. We use Bullet [28] for

collision detection.

5.6.1 Performance

We test our algorithm on a 2.8GHz Intel Core 2 Duo machine running as a single

thread. The performance of our algorithm highly depends on the number of contacting

fingers. With five contacting fingers, each frame takes 200ms on average for the

kinematic test and 5−10ms for the dynamic test. Because our method is not designed

for real-time, interactive applications, we sometimes trade off performance for more

variations in results. For example, if an input sequence has many solutions, we adjust

the branching frequency ǫ1 so that the search algorithm branches less frequently and

seeks for solutions with greater variations. Table 22 summarizes parameters and

runtime of several examples.

2
l1 and l2 are in millimeter (mm), mass is in kg, and time is in second.
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Figure 20: The hand model.

Table 2: Parameters and runtimes of several examples.

Example l1 l2 ǫ2 µ mass T time solutions
Turning a milk box 0.1 0.2 10/71 1.0 1.0 71 834 10

Pickup a milk box (1) 0.1 0.5 20/101 1.0 1.0 101 917 10
Pickup a milk box (2) 0.1 0.5 15/96 1.0 1.0 96 256 18
Pickup a milk box (3) 0.1 0.5 15/101 1.0 1.0 101 459 31
Pickup a milk box (4) 0.1 0.5 15/106 1.0 1.0 106 501 32
Pickup small bottle 0.1 0.5 30/102 1.0 0.2 102 199 20

Plate (1) 0.1 0.5 20/101 1.732 0.5 101 613 10
Plate (2) 0.1 0.5 30/221 1.732 0.5 221 1212 42

Spatula (1) 0.5 1.0 20/226 1.732 0.2 226 1323 20
Spatula (2) 0.5 1.0 20/226 1.732 0.2 226 3710 38

Pot (with Wine) 0.5 5 20/120 1.732 1.5 120 636 10
Two-hand big box (1) 0.5 2.0 10/101 1.732 1.0 101 378 10
Two-hand big box (2) 0.5 2.0 10/65 1.732 1.0 65 856 10
Two-hand small box 0.2 0.5 15/141 1.0 0.5 141 666 46

Pickup a bunny 0.1 0.5 40/231 0.5774 1.0 231 1214 30
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5.6.2 A cooking scene

We test our algorithm in a realistic cooking scene where the actor moves around in a

cluttered environment to fetch and manipulate kitchenwares of various shapes (Figure

21). The full body and object motions are captured using a standard motion capture

setting. We segment the input sequence into short clips to improve the performance

of the search algorithm.

(a) motion capture setting (b) rendering of synthesis results

Figure 21: Our algorithm synthesizes detailed hand motions for a realistic cooking
scene.

Results show that the same algorithm can synthesize detailed hand motions for

a variety of shapes and complex manipulation tasks without any prior knowledge or

user intervention (Figure 18). In most tasks, an initial stable grasp is not sufficient

for the entire motion if it remains static. Instead, our algorithm can successfully

discover the appropriate contact movements to synthesize a variety of solutions for

every task. Our algorithm is in fact insensitive to the initial contact location and

timing. It determines the proper contact time and location from the dynamics of

the object. We compare an automatically synthesized motion with one that provided

with precise timing for each finger on the motion of turning a pepper bottle on the

table (Figure 22). In both motions, the thumb establish and release contact at almost

the same time. In the automatic motion, the index finger is primarily used to exert
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rolling forces while the middle finger is used in the manually determined sequence.

However, the index finger and middle finger in the two motions have qualitatively

similar behaviors. The contact points on the object and on the finger both evolve

to different locations as the fingers roll and move over time. The subtle, sometimes

unpurposeful, movements of the fingers provide richness and realism that differentiate

a human hand from a mechanical robot hand.

Objects with sharp edges such as the milk box present challenges to the dynamic

test due to the discontinuity of normal direction. Grasping near an edge in a sim-

ulation could result in inconsistent forces across frames if we use the point-contact

model. In reality, grasping on an edge provides a wider range of possible contact forces

because the contact area captures a large range of normal directions. To reproduce

such phenomena, we approximate area contact by computing forces on a few proxy

points in the neighborhood of an actual contact point, capturing the local features

of geometry. As a result, grasping on an edge becomes an available grasping style in

our solutions.

5.6.3 Two-hand manipulations

Our algorithm can be directly applied to manipulation tasks with two hands. These

tasks requires hands to coordinate and apply contact forces collectively (Figure 18).

In the example of fiddling a small box with alternating hands, our algorithm accu-

rately estimates the timing and position of finger-object contacts, simply based on the

relative motion between the wrists and the object. Another example is to transport

a bigger box from the table to the ground. Before lifting, the hands casually reorient

the box by sliding it on the table. The contact establishment and release generated

by our algorithm appear coordinated although no prior knowledge is used in our al-

gorithm. During the transportation, the fingers slide and move on the surface of the

box due to the physical constraints and relative motion between the wrist and the
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Figure 22: Top row: motion with automatic timing. Bottom row: motion with
manual timing.

box.

5.6.4 Different contact strategies

Although our algorithm does not explicitly encourage the different contact strategies,

the linear objective in dynamic test (Equation 37) will always prefer forces at the

boundary of the constraints, i.e. sliding or no force. Therefore, we can control contact

movements in a solution by utilizing the forces and playing with different weighting

schemes in the objective.

The first experiment synthesizes static and sliding contact strategies respectively

with different friction coefficients on a motion of sliding a box on the table. By always

choosing sliding contact samples whenever possible, we synthesize finger motions that

slide on the box consistently regardless of the friction coefficient. Interestingly, the

sliding direction changes from the horizontal direction to vertical as the friction cone
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widened. This behavior results from the force optimization as it exploits friction to

minimize normal force. We also observe that the thumb and the pinky finger are

almost always used to apply force because they are the most “efficient” fingers while

others are used occasionally in different solutions. For example, the middle finger

sometimes taps and slides on the top of the box to provide more sliding force when

the friction coefficient is small. When the coefficient is large, it will only apply helping

forces when positioned to the side. Similarly, we synthesize a static grasp for the same

motion by always choosing static contacts in a solution. Even with a small friction

coefficient, the fingers still manage to maintain the contact pairs in most solutions.

When it becomes difficult for the thumb to maintain a static contact, it starts rolling

as a result of collision resolution. The algorithm also decides that it will be more

efficient for the middle finger to press the box onto the table once in a while in this

example.

In addition to prioritizing contact strategies, we can also generate finger gaits by

playing with the weighting scheme in Equation (37). In the example of rotating a

paper cup in hand, the fingers has to roll and relocate contacts asynchronously to

provide the necessary torques within the hand’s kinematic limit. We encourage finger

movements by increasing penalties for contact establishment so that free fingers will

start applying forces only after they find a contact location that is more efficient than

the existing ones. For the contacting fingers, rolling becomes the only feasible strategy

given the dynamics of the cup and kinematic constraints of the hand. Interestingly,

we observe that the choreography of fingers at capture time is encoded in the cup’s

varying rotation speed, which in turn leads to realistic synthetic finger motions. When

we test the same algorithm on a synthetic motion with constant rotation speed, the

finger motion doesn’t appear natural. Similarly, we synthesize finger gaits of turning

a small box in hand, and observe the same behavior of asynchronous finger relocation

(Figure 23). A similar optimization scheme is also used in the cooking scene for
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turning the pepper bottle before it is picked up. After the bottle is picked up, we

tune down the penalty for contact establishment to reduce contact movements.

Figure 23: Fiddling with a box in hand.

5.6.5 Editing object properties

In a production pipeline, virtual props often need to be modified after capturing

the actor’s performance. Therefore, being able to adapt the hand motion to various

object properties is highly desirable.

Our first test changes the object motion to generate different grasp styles. For

example, a power grip brings the object closer to the palm while a precision grip

keeps distance between the object and the palm. We conduct this experiment with

the spatula motion in the cooking scene (Figure 24). The original spatula motion

locates at the finger tips most of the time, resulting in a careful grasp. By moving

the spatula closer to the palm, the fingers automatically curl around the spatula to

form an envelop grasp, and use the palm to exert forces.

We can also use the same captured motion on objects with different shapes. We

show that replacing a box with a bunny or a mug retains the quality of the original
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Figure 24: Different grasp styles.

motion as the fingers naturally adapt to the new object with the same wrist motion

(Figure 25).

Figure 25: The hand adapts to a mug and a bunny from the same input motions.

5.6.6 Evaluation

We evaluate the quality of our results by comparing with motion capture data and

video footage. We captured the hand motion of picking up a box from the table

with a close-range camera setting, then use the motion of the wrist and the box

to synthesize 10 solutions. By comparing the visually most similar solution to the

captured data, we find that our result is qualitatively similar to the reference, although

not identical (Figure 26). While the motion capture result is sometimes noisy and
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contains penetrations, our results are visually and physically plausible. In addition,

we can synthesize a range of different grasps for the same captured motion.

Figure 26: Left: motion capture data. Right: our synthesis result.

We also record a video of an actor fiddling with a box using one hand, and cap-

ture the wrist and object motion at the same time (Figure 23). The motion exhibits

frequent contact movements and complex contact relations among the hand, the ob-

ject, and the table. We apply collision detection between the hand and the object

during manipulation, and resolve finger-table collision in post-processing. Although

our solution is different from the actual performance, partly due to the discrepancy

in hand modeling, the overall features of finger gaiting and contact sliding are present

in the synthesized motion. Our result is qualitatively similar to the video footage,

and appears plausible. However, this challenging example also reveal some drawbacks

of our method. For example, the fingers will sometimes penetrate the table during

manipulation because resolving penetration with the box and the table together is

difficult. The fingers we synthesized are also further apart from each other compared

to the video to prevent self-penetration.

Our improved algorithm is more efficient in discovering variability in the solution

space compared to the baseline. We visualize the search tree for both algorithms

on a motion sequence of 230 frames after exploring 3000 nodes. While the baseline

algorithm spends most computation within a narrow space (Figure 27), our algorithm
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covers a significantly larger space and provides more variations in the solutions (Figure

28). Figure 29 shows some of the solutions we discover within the first 50 solutions.

Figure 27: Search tree for a joint with 3000 nodes using the baseline algorithm. A
node has up to 3 branches and the search branches out every 5 frames. The search
clusters around a small portion of the motion space. Top left: z-axis of the MCP
joint of the index finger; top right: z-axis of the PIP joint of the ring finger; bottom
left: successful trajectories of the index finger; bottom right: successful trajectories
of the ring finger.

5.7 Discussions

Although we design the algorithm to be generic, its capability is confined by the

hand model being used. First, a rigid hand cannot model deformation at the site

of contact and the conformation of the palm to the object. The rigid models also

present difficulties to collision resolution. For instance, a tight grasp or a fist would

be hard to model with rigid palm and fingers. Another example is simultaneous
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Figure 28: Search tree for a joint with 3000 nodes. Top left: z-axis of the MCP joint
of the index finger; top right: z-axis of the PIP joint of the ring finger; bottom left:
successful trajectories of the index finger; bottom right: successful trajectories of the
ring finger.
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Figure 29: Our algorithm explores a variety of solutions.

contact with the object and the environment such as a finger going between a box

and the table before picking up the box. Second, interdependencies among fingers

are not modeled currently. As a consequence, the fingers appear to be independent

and sometimes unnatural in some results. Incorporating a more accurate hand model

with anatomically correct structure [135, 112] and deformable skins [58] is a fruitful

future direction to pursue.

The bottleneck of our current framework is the kinematic test which resolves

penetration by a few iterations of nonconvex optimization. While the method is

straightforward, it does not work well for extreme cases such as contacting with a

sharp corner or with small objects such as a pen or a piece of paper. A more robust

and efficient collision resolution routine can greatly improve the performance and

capability of our method.

Our search algorithm currently has limited planning capability because it only

takes into account the current frame. Consequently, it cannot automatically adjust
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the contact strategies to suit any input motions. We can improve the performance in

challenging cases by planning with short horizon or receding horizon (between decision

points), and incorporate a short term cost function and grasp quality metrics [86] to

decide whether to terminate a branch earlier.

Our algorithm is a useful complement to existing motion capture techniques, and

we can benefit from future advance in data capture to gather high quality input data

of the wrist and the objects. Currently, our method occasionally suffers from noisy

input data due to occlusion.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we have presented algorithms for controlling a full body character bal-

ancing and responding to dynamic events in the environment, as well as performing

everyday object manipulations in a natural manner. By exploring style variations

in the subspace of kinematics and physics constraints, we incorporate the previously

conflicting goals of achieving robustness and naturalness into the same control frame-

work. As a result, our algorithms allow for more general controllers that can adapt

to various constrained environments and be flexible about their action plans. Our

algorithms can be generalized to a wide variety of motion contents and character

structures, allowing for more intuitive controller design.

We first presented in Chapter 3 a control algorithm that synthesizes stylistic pos-

tural responses to small-scale perturbations. By enforcing the dynamic constraints in

the actuation space, the virtual character responds to arbitrary unexpected pertur-

bations in a style consistent to the input motion.

The main assumption of our approach is that only a small set of coordinated mus-

cle groups are activated for performing rhythmic motions. Biomechanics researchers

have also hypothesized that postural responses under perturbations can be activated

by a few muscle synergies [117]. Our results suggest that the same muscle syner-

gies used for the input motion can also produce reasonable recovery motions from

small perturbations, thereby lending support to the hypothesis of muscle synergies as

building blocks for constructing motor output patterns.

Our experiments also reveal distinctive motion features among individuals and

activities. For example, we observe that the distribution of eigenvalues accurately
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categories the energy level of a motion, e.g. the Tai-Chi performance is significantly

more energetic than normal walking, and walking in similar styles retains similar en-

ergy levels. When the same individual performs different actions of similar energy

levels, the distribution of eigenvalues are also similar. Another interesting observa-

tion is that the coordinations of responses reveal features of the actuation space.

Although the eigen-basis is subject to an arbitrary rotation, the space they span

should be unique. Our observation of unique coordination patterns in perturbation

responses seems to support the existence of a characteristic actuation space. A nat-

ural extension of our work would be to conduct functional analysis in the actuation

space to identify and understand the motor functions encoded in the space and their

interactions. It will provide more insights about the building blocks of a motion and

answer the question of how to choose the un-actuated coordinates. Currently, it is not

clear whether the human body switch to different muscle synergies in the presence

of sustained or large-scale perturbations to maintain balance. From our experiments,

some coordinates are not relevant in reproducing the reference motion, but are essen-

tial for recovery from small perturbations. A functional analysis of such coordinations

may provide us with more insights of the recovery process.

To address the balance problem at the presence of large disturbances, we intro-

duced in Chapter 4 a novel technique to control and synthesize real-time character

motions under physical perturbations and changes in the environment. We designed

an optimal feedback controller that allows for online re-planning of final goals and

completion time. The abstract dynamic model incorporates an accurate dynamic

model of the COM and high-level balance strategies such as angular momentum reg-

ulation. Our results show that varying the timing and final goal of the motion is

critical for producing robust and realistic results. We are encouraged to see that such

a simple dynamic model is able to capture the high level dynamic features of a vari-

ety of activities, including walking, long stepping, squatting, running, hopping, and
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wandering with random turns and stops. The generic form of the abstract model will

be useful to generate motions that utilize environment contacts as the primary source

of external actuation. We believe the same method will also perform well in sports

or gymnastic motions such as climbing, swing, and skiing etc. , as well as quadruped

motions.

The use of a simple abstract dynamic model also enables the application of ad-

vanced optimal control theories, thus allow us to synthesize motions that deviate

significantly from the reference, and enrich the set of possible perturbations. How-

ever, the current full-body pose reconstruction algorithm still heavily depends on the

reference. A promising future direction is to extend our algorithm in Chapter 3 to full

body motion using the contact force information solved from the abstract dynamic

model. Once we obtain the actuation/un-actuation space for the full body, we can

use them to simulate the full body motion under the momenta constraint provided

by the abstract model. In this way, we can allow for even larger deviations from the

reference. Such a framework can intelligently extract strong models from a single ref-

erence motion, and it has minimum dependencies on the reference trajectory during

synthesis.

The simplicity and generality of the abstract model makes it ideal for building

powerful super controllers from a library of motions. Recent research has shown

promising results in compositing controllers of different behaviors optimally in a sim-

ulation. Da Silva et al. [30] has shown that a class of controllers can be optimally

composed to enlarge the capability of each individual controller. Muico et al. [90] fur-

ther applied this theory to build a robust super controller from a handful of tracking

controllers, each of which is built from an example motion. However, the application

of this theory is limited by the base controllers in two counts. First, solving base

controllers for all kinds of human activities is an open problem in itself. Second,
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the capability of the super controller heavily depends on the quality of the base con-

trollers. We believe our abstract model is a fruitful direction in tackling these two

issues because it is applicable to a large variety of activities, and generalized well

from one single example. Compositing controllers for the abstract model will greatly

reduce the complexity of the algorithm and require only a small number of inputs.

The abstract model, however, doesn’t address the issue of discontinuous con-

tact constraints that happen especially frequently in hand-object manipulation tasks.

Chapter 5 described a sampling methods that explore solutions to manipulation prob-

lems within the discrete contact space. The success of our algorithm suggests that

a major portion of the high level manipulation goals and planning happens in the

wrist level, and reflects in its result, i.e. motions of the objects. Therefore, utilizing

motions of the wrist and the objects, we are able to discover a variety of realistic

solutions using a brute force greedy search algorithm. Our algorithm is also a useful

complement to existing search algorithms such as Rapidly-Exploring Random Tree

(RRT) and probabilistic roadmap. Most current search algorithms focus on efficient

explorations in the spatial domain as most of their applications are navigation tasks.

For example, for most mobile platforms, the dynamic constraints that transitions the

spatial position in time are not the determining factor for a navigation task. How-

ever, in our problem of detailed manipulations, the discrete contact dynamics plays

a dominant role in determining the feasibility of a solution. We have demonstrated

that a carefully chosen sampling scheme in transition works effectively with simple

uniform samples in space. Further investigation into the performance of state-of-the-

art searching algorithms with ours in discovering finger gaits for manipulation will be

helpful in better understand the properties of the problem and our algorithm.

The detailed hand motions we discover can serve as input to many applications.

For instance, data-driven methods have shown to be useful in controlling full body

motions, but their usage is very limited in hand manipulations because of the difficulty
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in data acquisition. Using our method, we can automatically generate a variety of

hand motions with different styles, well covering the motion space. With the resultant

motions, we will then be able to apply current state-of-the-art tracking controllers to

synthesize manipulation strategies under perturbations.

A boarder implication of our algorithms is a unified view of the balance problem

in locomotion and hand manipulation problem. These two problems are usually

solved in isolation as two separate research topics with specific domain knowledge.

In our work, we show that they can be both treated as an un-actuated models being

actuated or controlled by exerting forces from contact points. Motions of the un-

actuated model and contact point-force pairs are the two sides of a coin. If we have

information of one of them, we can solve for the other. In Chapter 4, we solve the

motion of the COM from information of foot contacts. And in Chapter 5, we solve the

finger-object contacts from motion of the objects. Furthermore, by treating contact

point-force pairs as control signals, we can apply advance optimization techniques

to develop powerful controllers of the un-actuated model (e.g. COM or rigid body

objects). There are, however, two remaining pieces of work to complete the loop.

First, we would like to apply our contact search algorithm in locomotion to solve for

foot contacts that best balance the COM. Second, we would like to develop feedback

controllers in the same way as in Chapter 4 for hand manipulations using motions we

solve in Chapter 5 as input.

6.1 Applications

Animation. Although research in character animation has rapidly advanced in re-

cent years, the impact has not been able to reach far into the movie and gaming

industry. While the industry adapts relatively quickly to automatic algorithms in

synthesizing natural phenomena or special effects such as ocean or explosion, char-

acter motions are exclusively created by hand. Animators are reluctant to give up
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their control over every gory details of a character’s motion. Even motion capture is

deemed unsuitable as the final output because the data is not flexible to change at

will and adapt to cartoon or super hero physics. The primary use of motion capture

is to provide reference or ground truth for animators.

One barrier to use automatic algorithms for synthesizing character motion is the

control interface. Most algorithms are designed by and for programmers. Knowl-

edge of the low level implementation details or problem formulation is required to

understand the input to the algorithm. Nontechnical users will probably take more

effort to use the system than creating the motions by hand. In addition, assumptions

and domain knowledge incorporated in the system design limit the applications of

specific algorithms in a production setting, when the practical problems do not meet

the requirement. Only algorithms with minimum problem specific assumptions and

intuitive “control knobs” will be suited in an industrial setting.

We strive to meet these two goals in the design of our algorithms. For example,

our methods do not depend on a particular character model or system dynamics,

removing the burden of per-case tuning and allowing for altering the properties of

the physical world. An important feature of our algorithm is its hybrid nature that

combines kinematics control with physics-based simulation. As a result, it provides

better directability compared to pure physics-based methods, and it automatically

ensures realism by enforcing the most essential physical properties in a motion. More

importantly, a hybrid methods provides control to decide what and how much to

“cheat” physics for controllability in kinematics. We believe our algorithms serve

as a convenient prototype for the industry to start adapting and utilizing animation

research results in production.

There are a few features we can already think of to make our algorithms more

usable. For example, the abstract model can be used as a guidance to help animators

design physically plausible motions (real-world or cartoon physics). We can run our
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algorithm on motions animated manually to compute a COM trajectory that respects

the laws of physics. We can then present the result and the corresponding modification

to the full body motion as suggestions of which part in the motion can be made more

physical. For synthesizing hand motions with our algorithm, we already provide

control of the overall style (more steady or clumsy), and allow for modulations of

various properties of the hand and the objects. In practice, artists often demand direct

forward kinematics and inverse kinematics control. We would like to include these

features in the future such that the user can directly specify angles for a particular

joint or set a contact point at a particular coordinates. Further, an intuitive user

interface for visualizing and selecting desired motion from a large motion dataset can

be immensely useful. Inspired by the Many-Worlds-Browsing technique [123], one

possible future direction is to create an interactive interface that allows the user to

browse and adjust parts of the scenes with ease. To provide seamless interaction

experience, we can solve many solutions in parallel thanks to the sampling nature of

our algorithm.

Robotics. Traditional robotics controllers had been primarily focusing on robust

and accurate control with no regard to the motion quality, partly due to limitations

of the control hardwares and lack of feedback sensors. Therefore, animation control

algorithms that generate high quality motions in a simulated world is not suitable for

controlling robots in the real world. Robotics and animations were considered two

separate fields. However, with recent advances in material sciences and manufacturing

technology, robotic actuators are becoming considerably lighter and faster, which

enables the execution of flexible and precise motions. Sensors have also been improved

considerably in terms of accuracy and feedback modals (i.e. visual, acoustic, haptics

etc. ). The physics between real and simulated worlds are becoming more and more

consistent. In addition, the increasing popularity of personal assistant robots requires
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compliant and responsive controllers that are versatile in an unstructured environment

and safe to interactive with. The demand in robotics control is becoming more aligned

to research goals in character animation. We can now start to share algorithms and

platforms between humanoid robots and virtual characters. The work presented in

this thesis brings in natural interactions to physics-based simulation, therefore has

high potential to also improve controllers for humanoid robots that interact and

corporate with humans.

Biomechanics. Several aspects of our algorithms are inspired by insights from

biomechanics research. Our software systems, in turn, can serve as a computational

platform for testing hypothesis on human biomechanics or neuromotor control. Due

to the limited computation tools, most traditional computational neuroscience re-

search focuses on the analysis of a very detailed and specific aspect of a motion from

observed data. A powerful computation platform that allows for prediction and syn-

thesis of detailed and full scale motions from hypothesis will be immensely helpful

to advance the field. A fruitful direction to extend our work for this purpose is to

work with a detailed anatomical model. It would be interesting to see whether our

methods on articulated rigid body can also be applied with success to a more realis-

tic biomechanical model. As a first step, comparing the results of our method with

Torres and Ting’s work [117] on different ambulation tasks may provide insights on

the appropriate abstraction to study human motions. Our methods of identifying

eigen-torques and controlling COM using contact forces are also useful for analyzing

the acquisition and adaption of motor patterns on health individuals as well as on pa-

tients with mobile disability because both the torques and COM trajectories captures

distinctive features of motions. The results can then help shred light on the design

of prosthetics devices or bionic devices, as well as rehabilitation procedures. In gen-

eral, opportunities of marrying neuroscience with computational power are numerous,
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existing and promising.

6.2 Future work

Motion Retargeting. Motion retargeting has been an important problem for com-

puter animation for two major reasons. First, the shape and proportion of a character

often change gradually as the story progresses in an animation sequence. It is there-

fore important to make sure motions can be applied consistently to the character

throughout the story. Second, as an increasingly prevailing method for animation,

motion capture almost always requires retargeting motions from an actor to a virtual

character of different shape and build or even different species. Although the motion

contents can be of many forms, such as full body motion, hand-object manipulation,

facial expressions, or a combination of them, the key questions in retargeting are com-

mon. To retarget a motion, we need to define what content can transfer directly and

what needs to be adapted to different models. To adapt motions between different

models, we need to define the correspondence or a mapping between the source and

the target. Existing methods usually establish kinematic correspondence between end

effectors, and solve IK problems as a mean of retargeting [43, 48]. The correspondence

plays a key role in the success of the algorithm, usually requiring prior knowledge of

the models and making strong assumptions about the motion context. A specific

character model, or the same character model with a different type of motion re-

quires unique treatments to ensure a meaningful mapping between the source and

target. Therefore, retargeting is currently solved with considerable manual effort and

domain knowledge, when automatic methods come into picture only in a late stage of

the pipeline. A general and automatic approach of establishing correspondence will

greatly facilitate the retargeting process.

Although the work in this thesis doesn’t focus on the retargeting problem, our goal

is to develop general solutions that work for a wide range of models and motions. An
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important insight we gain is that optimization is a promising generic representation

of motions, which doesn’t depend on the model or the motion content. The kinematic

or dynamic features of the system can be specified as constraints, and the high level

intention of the motion can be specified as an objective function. Low level execution

of the motion is a direct consequence of achieving the goal optimally within the

constraint space. Therefore, if we can describe the intention of the motion in model-

independent terms, such as moving the COM from one location to another using

certain velocity, we can retarget this motion to different characters by solving an

optimization with the same objective but different constraints. This is the approach

we have been taken in this thesis, and by concurrent work of feature-based motion

synthesis [3, 59, 32]. In practice, it is not always possible to specify a motion by

high level model-independent objectives. A fruitful next step is to retarget model-

specific objectives to different character models, which should be considerably more

straightforward and intuitive for automatic algorithm design.

Inverse Optimization. Although optimization appears to be a powerful repre-

sentation of motion, in practice, it is difficult to formulate a solvable optimization

problem that yields meaningful results. Often times, the system dynamics are not

known a priori, and it’s difficult to describe a motion by a few high level features.

Instead, we are given one or a few motions for a particular model as examples of

desirable output without much knowledge of the underlying generation mechanism.

The process of identifying the optimization problem from the example outputs is an

inverse optimization (IO) problem.

Inverse optimization is closely related to a type of reinforcement learning that

learns the value function. It has been applied in robotics to allow robots mimic

movements from human demonstrations and trial-and-error. When the cost function

is defined as a linear combination of features, the relative weights can be recovered by
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exploring convexity of the problem. Abbeel and Ng et al. [2] applied the method in

aircraft auto-piloting by learning weights from experienced pilots. Lee and Popović

[73] improved on the method to a more accurate result for deterministic systems,

and successfully applied the method in navigation tasks. When the cost function

takes a generic form, but the problem is affine in control, Todorov [115] explore the

linearity in control, and use sample points to approximate the cost function in the

neighborhood of the examples. However, their algorithm has been applied only to

simple mechanical models. Expanding the capability of inverse problems to various

types of human motions is a promising future direction that will benefit many scientific

fields.

Abstract inertial model. Solving an IO problem usually involves many evalu-

ations of the optimization problem. Being able to solve the optimization problem

efficiently is key to the success of an IO problem. Unfortunately, most problems

in character animation suffer from nonlinearity and high dimensionality issues. The

sources of these difficulties can come from the model kinematics and dynamics, as well

as the motion features. However, it is commonly believed that the high dimensionality

is an artifact of model and motion representation, and the intrinsic dimensionality of

natural human motion is low. Many dimensionality reduction techniques have since

been explored to reduce the complexity of motion representation, but most of them

pay the price of a narrower range of representable motion while still suffering from

the nonlinearity issue. On the other hand, we believe an abstract model is a better

approach in reducing both dimensionality and nonlinearity without sacrificing gen-

erality. Our unified view of motion as the global DOFs being controlled by contact

forces is especially useful in formulating solvable forward and inverse optimization

problems. We have already shown that an abstract model of the COM can easily

incorporate the otherwise nonlinear features such as the linear and angular momenta;
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and a näıve uniform sampling method is sufficient to handle the discrete contact

dynamics under this framework.

The major drawback of our current abstract model is the lack of inertial effects.

Utilizing the change of body shape as a mean of angular momentum control is an

important feature for articulated or deformable models. Modeling the inertia in our

abstract model requires an additional six DOFs, but the fundamental framework

does not need to change. We believe the exploration of inertia space will enable more

interesting control strategies, and it will be a fruitful enhancement to our abstract

model and contact control framework. Such a model can facilitate the development

of forward and inverse optimization techniques in character animation.

Deformable and anatomically correct human model. An abstract model per

se, even with inertial dynamics, does not yet represent a meaningful character motion.

Mapping from the abstract model to a full scale model is an important final step to

make the abstract model framework useful. Since the abstract model captures only

the most essential aspects, quality of the final result depends heavily on the capability

of the full scale model. While the traditional articulated rigid body model appears to

be a perfect balance between fidelity and complexity, it becomes increasing important

to model the deformation of flesh and skin, as well as the anatomical details that

cannot be represent by articulated rigids. We can carry the abstraction idea further

by employing a level of detail approach. For example, we can layer the anatomical

model on top of the articulated rigid body model, then attach deformable skins on

the anatomical structure. Mappings between each consecutive level can be improved

on individually without affecting the other layers. Jain and Liu [58] has presented

some preliminary work in combining a deformable skin with articulated rigid bodies.

We believe this is a promising direction to pursue in order to achieve fully detailed

motions with affordable computation.
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APPENDIX A

FEEDBACK GAINS

We provide a compact description of our implementation on computing feedback gains

in Equation (22). Please refer to Jacobson and Mayne [56] for complete derivations

of implicit final time problems (Chapter 2.3.5) and final constraint problems with

inequality constraints in control (Chapter 2.5).

We denote the dynamic function (Equation (19)) as f , and use subscripts to

represent partial derivatives. In our problem, the Hamiltonian is defined as H =

L + V T
x f , with the objective L defined inside the integral in Equation (20). The

feedback gains are computed as follows:

Kx =−H−1
FFZ(HF + fT

FVxx),

Kµ =−H−1
FFZfT

FVxµ,

Kt =−H−1
FFZfT

FVxtf ,

where

Z = I− gT
F(gFH−1

FFgT
F)−1gFH−1

FF.

K = {F|g(F, Λ) ≥ 0} approximates a static friction cone using a linear combination

of basis vectors in the columns of Λ. g = ΛTF is the unilateral constraint of contact

forces in which the projection of F on Λ has to be positive. The gradient gF, therefore,

is simply ΛT .

Once we compute the coefficients Kx,Kµ, and Kt, we can use Equation (22) to

compute the feedback force δF. In practice, taking a full step of δF may violate the

unilateral constraint. We instead search for a maximum step length λ ∈ (0, 1) to keep

F within the feasible region such that F = F∗ + λδF ∈ K.
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Derivatives of V are computed by integration of the following ordinary differential

equations backward from tf to t0 at X∗ and F∗. These expressions are simplified for

our problem thanks to the linearization of the friction cone.

V̇x =−Hx,

V̇xµ =− (fx + fFZTKx)T Vxµ,

V̇xtf =− (fx + fFZTKx)T Vxtf ,

V̇µtf =V T
xµfFZT H−1

FFZfT
FVxtf ,

V̇xx =−Hxx − fT
x Vxx − Vxxfx

+ (HFx + fT
FVxx)

T ZT H−1
FFZ(HFx + fT

FVxx),

V̇µµ =V T
xµfFZT H−1

FFZfT
FVxµ,

V̇tf tf =V T
xtf

fFZT H−1
FFZfT

FVxtf .

Boundary conditions at tf are the following:

Vx = ΨT
xµ, Vxµ = ΨT

x , Vxtf = Hx + Vxxf, Vµtf = Ψxf,

Vxx = 0, Vµµ = 0, Vtf tf = HT
x f + fT Vxxf.
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[60] Jenkins, O. C. and Matarić, M. J., “Deriving action and behavior primi-
tives from human motion data,” in IEEE/RSJ, pp. 2551–2556, Sept. 2002.

[61] Joerg, S., Hodgins, J., and Sullivan, C., “The perception of finger mo-
tions,” Applied Perception in Graphics and Visualization (APGV), 2010.

[62] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K.,
Yokoi, K., and Hirukawa, H., “Resolved momentum control: humanoid
motion planning based on the linear and angular momentum,” in Intelligent
Robots and Systems, pp. 1644–1650, 2003.

[63] Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M. H.,
“Probabilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566–580,
1996.

[64] Kim, J., Cordier, F., and Magnenat-Thalmann, N., “Neural network-
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[125] Wampler, K. and Popović, Z., “Optimal gait and form for animal locomo-
tion,” ACM Trans. on Graphics, vol. 28, no. 3, pp. 1–8, 2009.

[126] Wang, J. M., Fleet, D. J., and Hertzmann, A., “Optimizing walking con-
trollers,” ACM Trans. Graph. (Proc. SIGGRAPH Asia), vol. 28, no. 5, pp. 1–8,
2009.

[127] Wang, J. M., Fleet, D. J., and Hertzmann, A., “Optimizing walking
controllers for uncertain inputs and environments,” ACM Trans. Graph. (SIG-
GRAPH), vol. 29, no. 4, pp. 1–8, 2010.

[128] Whitman, E. and Atkeson, C. G., “Control of a walking biped using a
combination of simple policies,” in IEEE Int’l Conf. on Humanoid Robotics,
2009.

[129] Witkin, A. and Kass, M., “Spacetime constraints,” in SIGGRAPH, vol. 22,
pp. 159–168, Aug. 1988.

[130] Wojtan, C. and Turk, G., “Fast viscoelastic behavior with thin features,”
ACM Trans. Graph., vol. 27, pp. 47:1–47:8, August 2008.

[131] Wooten, W. L., Simulation of Leaping, Tumbling, Landing, and Balancing
Humans. PhD thesis, Georgia Institute of Technology, 1998.
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