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Fig. 1. Snapshots of our onlinemarker-based hand tracking systemon sequenceswith two-handed andhand-object interactions.Wedemonstrate
a novel marker-labeling and tracking system that enables fully-automatic, real-time estimation of hand poses in challenging interaction scenarios with frequent
occlusions. Markers labeled as left hand and right hand are rendered as orange and blue spheres respectively, while markers associated with predefined rigid
bodies are rendered as green spheres.

Optical marker-based motion capture is the dominant way for obtaining
high-fidelity human body animation for special effects, movies, and video
games. However, motion capture has seen limited application to the human
hand due to the difficulty of automatically identifying (or labeling) identical
markers on self-similar fingers. We propose a technique that frames the
labeling problem as a keypoint regression problem conducive to a solution
using convolutional neural networks. We demonstrate robustness of our
labeling solution to occlusion, ghost markers, hand shape, and even motions
involving two hands or handheld objects. Our technique is equally applicable
to sparse or dense marker sets and can run in real-time to support interaction
prototyping with high-fidelity hand tracking and hand presence in virtual
reality.
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1 INTRODUCTION
Optical motion capture is the prevailing method for capturing high
accuracy and high framerate motion. Applications across visual
effects, gaming, VR/AR, usability research, and biomechanics are
enabled by commercial systems that provide reliable sub-millimeter
accurate tracking at up to 2000Hz. Notably, real-time full-body mo-
tion capture has enabled virtual production applications for games
and movies [Antoniades 2016]. However, when it comes to detailed
and dexterous finger motions, no commercial or academic software
is able to produce comparable real-time tracking results, even in
elaborate capturing environments.
The challenge of real-time capture lies in the identification or

labeling of identical-appearing passive markers. While the labeling
problem can be solved by active markers, their wired electronics
or bulky sensors make them undesirable, and active systems are
limited in the number of markers which can be tracked simultane-
ously. A common solution in full-body tracking for marker labeling
is to start from a predefined T-pose or A-pose, then rely on high
framerate tracking to propagate labels forward. This solution breaks
down when tracking fails due to occluded markers, ghost markers
from spurious reflections, or dense marker sets needed to capture
subtle articulations. For body motion, tracking failures can be mini-
mized by careful placement of cameras and marker layout design.
Unfortunately, finger motions present additional challenges due to
their high degree of articulation, self-similarity, and small scale. In
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particular, frequent occlusions are inevitable even in common poses
such as the fist.

Recent work has sought to reduce the marker density on a hand
and optimize the marker layout, to disambiguate labels and mini-
mize the impact on pose reconstruction [Alexanderson et al. 2017;
Schröder et al. 2015;Wheatland et al. 2013]. However, methods using
sparse marker sets rely on priors to hallucinate missing information
about finger motion. They are especially susceptible to disruption
from occluded or ghost markers. Although prior knowledge can
regularize the results, they can lead to unresponsive animations or
may not be accurate enough for capturing real-time manipulation
tasks.
We contribute a technique that pushes the state-of-the-art of la-

beling and tracking for both sparse marker sets as well as dense
marker sets that capture the full 26 degrees of freedom on a hand.
We rely on a convolutional neural network (CNN) to predict labels
given 3D marker positions detected by the motion capture system.
Notably, we pose the problem as a keypoint estimation problem
on 2D images, for which CNN’s have proven to be particularly ef-
fective. To satisfy the need for high quality ground truth, we use
synthetic data in a carefully designed data augmentation procedure
for training (Section 3). At runtime, the output of the CNN is used to
initialize labels whenever we need to reinitialize tracking of mark-
ers (Section 4.2). These online labels enable us to reconstruct hand
poses in real-time (Section 4.3). Even though we train the network
with synthetic data, we show it generalizes well to realistic data,
including a variety of novel hand proportions and activities absent
from the training set. Furthermore, we show our network is robust
to occlusions and ghost markers that arise in sequences with ob-
ject and environment interactions (see Figure 1). The flexibility of
synthetic data also allows us to test different marker layouts. Our
results show that the CNN labeling works just as well on a sparse
marker set similar to Alexanderson and colleagues [2017]. While
our marker labeling step is not user-specific, we can interactively
calibrate a user’s marker configuration at run-time to achieve the
highest quality tracking (Section 4.5). We demonstrate the robust-
ness of our real-time labeling and tracking system by capturing
fascinating performances, such as object manipulation, hand-hand
interaction, dancing, and playing musical instruments. Though not
consumer-facing, our system can serve as a “time machine” to study
the usability of AR/VR interaction protypes for future products
with instantaneous feedback. In addition, our natural hand-hand
and hand-object interaction data can be rendered as depth or RGB
images to train deep learning models for solving markerless hand
tracking. We publish our training dataset as well as our trained
convolutional neural network to enable follow-up research. 1

2 RELATED WORK
Labeling identical markers for motion capture remains an active
problem in computer vision, computer graphics and robotics. Ringer
and Lasenby [2002b] cluster pairwise distances between markers
across frames to produce marker label hypotheses and propagate
these hypotheses in a Bayesian multiple hypothesis tracking frame-
work. Meyer et al.[2014] initialize marker labels by requiring users

1https://github.com/Beibei88/Mocap_SIG18_Data

to start in a T-pose, so that arms and legs may be extracted from
detected principal axes. Schubert and colleagues [2015] relax the
requirement of a T-pose and match against a large database of pre-
viously observed poses instead. Schubert et al. [2016] further extend
this work to support automatic calibration of the subject’s skeleton.

To capture the hand’s full articulation, several markers are needed
on each finger and at least three markers are needed on the back
of the hand [Kitagawa and Windsor 2008]. However, such a dense
marker set is difficult to disambiguate, especially in a large space
or in conjunction with full-body tracking [Wheatland et al. 2015].
Hence, recentwork has explored the use of sparsemarker sets [Alexan-
derson et al. 2016; Schröder et al. 2015; Wheatland et al. 2013], which
attempt to capture as many as 20 degrees of freedom of the five
fingers with as few as three markers. Alexanderson et al. [2016]
in particular extend the multiple hypothesis tracking approach of
Ringer and colleagues [2002a] to handle sparse marker sets. [May-
cock et al. 2015] and [Aristidou and Lasenby 2010] further leverage
inverse kinematics for online tracking and gap filling, respectively.
Maycock et al. [2015] run the Hungarian method at each frame
for labeling, which delays recovery from wrongly labeled markers
resulting from the previous frame or occlusions. Its follow-up work
[Schröder et al. 2017] utilizes dense points from 3D scanner for hand
model fitting and marker calibration.

Our method pushes the state-of-the-art in labeling sparse marker
sets, but also tackles the ambiguity problem of dense marker sets
directly. Although sparse marker sets can be used to generate com-
pelling hand-over animations [Kang 2012], dense marker sets cap-
ture additional nuances in finger pose and motion that can be used
to drive real-time dexterous manipulation of physical objects and
interaction prototyping tasks.
There is a rich body of work on markerless tracking of hand

motion from either depth [Oikonomidis et al. 2012; Taylor et al. 2016;
Tkach et al. 2016; Tompson et al. 2014] or RGB [Simon et al. 2017]
cameras. Although high-end 3D scanners or depth cameras can
generate high-fidelity geometry at high framerate such as [Taylor
et al. 2017], they are more expensive and harder to set up and use
compared to marker-based systems. Additionally, such markerless
systems cannot yet achieve sub-millimeter accuracy and track the
complex hand motions that optical motion capture can, which are
required for our real-time dexterous hand interactions for complex
tasks and subtle motions.
Convolutional neural networks have demonstrated state-of-the-

art results for image classification [Krizhevsky et al. 2012], object
detection [Ren et al. 2015], and semantic segmentation [He et al.
2017]. We transform the marker labeling into a keypoint estimation
problem to leverage recent progress in this domain.

3 DEEP LABELING
In our proposed system, each glove is affixed with 19 markers (Fig-
ure 2). The geometric structure of the markers encode their labels
implicitly through the kinematic structure of the hand. Alexander-
son et al. [2016] decode this information with a Gaussian Mixture
Model fitted from the spatial distribution of markers in a hand-local
coordinate system.We propose transforming the 3Dmarker labeling
(classification) problem into an image keypoint regression problem
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Fig. 2. Dense marker set layouts. We attach 19 adhesive reflective mark-
ers on each off-the-shelf golf golve. Three markers are placed at the back
of the glove, and a marker is attached to the center of each finger bone
segment. We build five pairs of gloves of different sizes to capture the full
range of adult hand sizes. These gloves are easy to put on and remove, which
streamlines capture preparation.

that can be efficiently solved with a convolutional neural network.
The estimated keypoints are then corresponded with the actual 3D
markers using a simple bipartite matching approach.

3.1 Labeling markers using a convolutional neural network
Deep neural networks have been widely applied to problems from
image recognition [Krizhevsky et al. 2012] to automatic transla-
tion [Wu et al. 2016]. However, it is not obvious how to apply
traditional architectures to the marker labeling problem. Regressing
directly from a vector of 3D marker locations to labels is sensitive
to the ordering of the markers in the vector. Despite recent work on
sparse voxel representations, volumetric methods and 3D convolu-
tions are still computationally expensive and memory-inefficient for
real-time evaluation [Riegler et al. 2017]. A key insight is that we
can capture the spatial relationships between the markers through
2D image projections, which are well handled by deep convolutional
structures.
Therefore, to solve the labeling problem, we first render input

3D point cloud as a sparse 52 × 52 depth image (Figure 3) through
an orthographic camera, whose principal axis passes through the
center of point cloud. This camera is zoomed isotropically such that
the projected points fit within a 10%margin of the image. Depth (“z”)
values are normalized between [0.1, 1.0] and then rendered as pixel
intensities. Critically, we preserve 3D information about the markers
by splatting their relative depth, effectively creating a “sparse” depth
image of the markers. We then feed this image into a conventional
VGG-style neural network [Simonyan and Zisserman 2015], which
consists of several layers of 3 × 3 convolutions, followed by a fully-
connected layer, and finally output (in order) the 19 3D marker
positions on the hand (see Table 1). During training, the principal
axis of the orthographic camera is randomly picked. For run-time
labeling, we generate 10 random principal axes and select the one
with the largest spatial spread (that is, maximizes the eigenvalues
of the covariance matrix of the 2D image positions).
To map these back to the original markers, we solve a bipartite

matching problem. Given the output of the neural network y1...19,
we match these to the original marker locations xi ...n with

min
M

∑
j
∥yj − xM(j)∥2 (1)

Fig. 3. CNN deep labeling. A list of 3D marker locations are fed into the
labeling system (a). They are mean centered and rendered as a depth image
(b). The CNN takes the depth image as input and outputs (in order) the 19
3D marker locations on the hand. Each marker is color coded by its entry
in the marker set in (c). Bipartite matching is used to associate the input
markers to their corresponding marker labels.

This can be posed as a minimum-cost flow problem where the edge
weights represent distances, and solved using standard linear pro-
gramming algorithms [Cormen et al. 2009].

3.2 Training data
The biggest bottleneck for supervised learning with a deep network
is getting accurate, diverse and ample training data. To avoid te-
dious and error-prone manual labeling for dense marker sets, we
use synthetic data instead. Thanks to the work of Tompson and
colleagues [2014] on real-time hand pose recovery from depth input,
we are able to generate large datasets with various valid hand poses.
By referring to the marker set positions on the predefined hand
model (Figure 2), a synthetic labeling dataset can be generated with
diverse hand poses. In our framework, we use a Kinect camera to
collect different hand gestures from five subjects exercising all the
degrees of freedom of a single hand, such as gestures from sign
language. 170330 frames of hand poses are used for training.

Table 1. Structure of our neural network.Conv is short for spatial convo-
lution, BN is the batch normalization layer, ReLU is the activation function
f (x ) =max (0, x ) and FC is a fully connected layer. The input of our net-
work is a 52 × 52 depth image, and the output is a 19 × 3 matrix which
contains the predictions of the 19 3D marker locations on the hand model.

Layer id Type Filter shape Input size
1 Conv + BN + ReLU 64 × 3 × 3 1 × 52 × 52
2 Conv + BN + ReLU 64 × 3 × 3 64 × 50 × 50
3 Maxpool 2 × 2 64 × 48 × 48
4 Conv + BN + ReLU 128 × 3 × 3 64 × 24 × 24
5 Conv + BN + ReLU 128 × 3 × 3 128 × 22 × 22
6 Conv + BN + ReLU 128 × 3 × 3 128 × 20 × 20
7 Maxpool 2 × 2 128 × 18 × 18
8 Reshape N/A 128 × 9 × 9
9 FC + ReLU 2048 × 10368 10368
10 FC 2048 × 57 2048
11 Reshape N/A 57

3.3 Robustness
In practice, we need to be robust to artifacts of real-world motion
capture. First, stray reflections in the capture space are common
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and may result in the system identifying additional spurious “ghost”
markers. Second, a marker on the glove may be occluded in all of
the camera views, making it impossible to reconstruct its location.
In addition, there is significant variability between human hand
shapes and sizes which will affect the resulting marker layout.
To ensure robustness to each of these factors, we augment our

synthetic training data with several sources of randomness. First,
to ensure robustness to variations in hand shape, we add random
3D jitter to each marker location during training. In addition, at
each training step we drop between 0 and 5 random markers from
each training sample. Finally, we add between 0 and 2 random
ghost markers. Markers are omitted or added at random to model
occlusions and ghost markers respectively. The effect of this data
augmentation on the robustness of our networks can be seen in
Table 2.

4 REAL-TIME HAND TRACKING

4.1 Overview
We adopt an off-the-shelf 16-camera Optitrack motion capture sys-
tem [Opt 2018] for marker tracking (see Figure 5). It is configured to
provide a 120Hz stream of marker positions P t ∈ R3×n , t ∈ {t0, t1...}
at each time stamp where n is the number of observed markers in
the current frame. Markers are assigned unique IDs as long as they
are continuously tracked; if a marker disappears briefly, it returns
with a new ID.

We use a model-based tracking approach for reconstructing the
hand poses from the marker labels. Our model consists of a kine-
matic hand skeleton H , a mesh model S , and rest pose marker lo-
cations mi for i = 1 . . .n. Our hand model H has 26 degrees of
freedom (DOF) where the first 6 DOF represent the global transfor-
mation {R, t} and there are 4 rotational DOF per digit. We use the
standard linear blend skinning/enveloping method. Given a hand
pose θ , a rest-pose position vk , and a set of bone weights ωik , we
can transform a vertex on the rest mesh into world space using:

LBS(θ ,mk ) =
∑
i
ωik ∗Ti (θ ) ∗

(
T rest
i

)−1
∗vk

Here, T rest
i is the bone transform in the rest space and Ti can be

computed from the hand pose θ . We parameterize the markers in
the same waym = {ω,v} to transform a marker to the global space.

4.2 Online marker labeling
The first stage of our algorithm is to group the markers into clus-
ters, where each cluster potentially represents a single hand. We
use a simple agglomerative clustering approach, iteratively join-
ing clusters provided (a) the cluster centers are no further than
200mm apart and (b) the combined cluster contains no more than
22 markers. Resulting clusters containing between 14 and 21 mark-
ers are considered to be possible hands, and we randomly assign
the left/right hand to a cluster. The resulting left/right hand clusters
are then fed into the deep labeling pipeline (Section 3), and then
into the inverse kinematics solver. We then evaluate certain quality
metrics on the resulting reconstruction (Section 4.4); if the result
is deemed successful, then we can proceed with tracking using the

marker IDs directly from the mocap system without the clustering
and deep labeling steps.

Note that if the left/right hand are misassigned during the cluster-
ing phase, then the reconstruction quality tests will fail (Section 4.4)
and the algorithm will simply retry at the next frame; since the sys-
tem runs at 120fps, a few missing frames due to hand misassignment
at the initiation of tracking will be barely noticeable to users.
During tracking, some markers will be inevitably occluded and

appear again in the scene with a different ID. When new markers
appear, we run two re-labeling processes simultaneously. In the
first, we simply extrapolate the expected location for each missing
marker based on the previous frame’s hand pose, and assign markers
that are less than 15mm from their expected location. In the second,
we re-run the deep labeling pipeline and use the labels from the
matching step. We run IK using both labelings and select the one
which has the lowest error under our reconstruction metric.

4.3 Inverse Kinematics
Given the labeled markers, we obtain the hand pose θ using inverse
kinematics (IK) by optimizing the following least squares energy:

EIK =
∑
i

| |LBS(θ ,mi ) − pi | |
2
2

where pi is the corresponding labeled marker for the markermi .
Because the data from the motion capture system is already very
smooth and accurate, we did not find that any regularization to
ensure motion smoothness was necessary. Levenberg-Marquardt
solver is used here and is initialized by valid hand pose from the
previous frame when available, or a canonical relaxed hand pose
otherwise. Generally this iterative solver converges within five steps.
We do not consider missing markers in IK step currently and filling
them using CNN’s prediction is a promising future direction.

4.4 Validation
During a step of online tracking, we may have multiple proposed
labelings: (a) the tracked labels from the previous frame (if avavail-
able); (b) the previously tracked labels plus additional labels based
on proximity (Section 4.2); and (c) labels generated by the deep
labeling step (Section 3). For each proposed marker labeling, we run
the inverse kinematics step to fit the markers. The resulting RMS
error provides an estimate of how well the hand model fits the data.
Poses that generate RMS error more than 8mm are discarded. If
multiple proposals pass the RMS test, we select the pose using the
most labeled markers.

4.5 User Marker Calibration
In a given tracking session, we select the glove from our set of five
pre-constructed gloves (small through large) which most closely
matches the user’s hand size. Each glove has a corresponding hand
model H which has been artist-constructed. However, due to the
variability in human hand shape and mismatch between our prede-
fined marker set and the markers on the gloves, we usually can’t
generate the most accurate poses. The most objectionable artifact
that we notice is that the thumb and index finger in the tracked hand
do not touch, even when they are touching in reality. We can correct
for this using a quick calibration process. During the calibration
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Fig. 4. System overview. The input to our system is a list of unlabeled 3D marker locations from the motion capture system. The tracker is initialized by
clustering markers into groups and randomly assigning the left/right hands to clusters. The left/right hand markers are passed into the online marker labeling
pipeline to obtain the label of each marker. Inverse kinematics is applied to reconstruct the hand poses from the labeled markers. The tracked labels and hand
poses are fed into the next frame for online tracking if it passes our reconstruction metric.

Fig. 5. Camera setup.We use 16 Optitrack cameras affixed to a rectangular
grid to capture all of our sequences.

step, we capture a number of poses, including asking the user to
touch their thumb to each of their other fingertips (Figure 6, left; see
video for a sample session). We then solve an optimization problem
which moves the markers to both reduce tracking error and ensure
the fingers of the tracked hand touch as expected (Figure 6, right).
We formulate marker calibration as an optimization problem.

The hand model is selected among five pre-defined hand models
before capture and is fixed during optimization. We jointly solve for
hand poses (θ ), marker set (M) and contact points (C) with a set of

pre-specified poses:

E(θ ,M,C) = Edata(θ ,M) + λ1Eprior(M) + λ2Econtact(θ ,C)

Data term. The data term measures how well the skinned marker
matches the tracked marker locations.

Edata =
∑
i, j

∥LBS(θi ,mj ) − pi j ∥
2
2

where j is the index of the markers on hand (i.e, j ∈ [0, 18]) and i is
the index of the poses performed during calibration.

Marker location prior. We penalize deviation of the marker from
its expected location relative to the hand. This helps regularize the
problem.We split this term into two: one whichmeasures movement
along the surface, and one which measures movement normal to the
surface. Movement normal to the surface is penalized more strongly
because the marker radius is known to be fixed (3.2mm).

Eprior =
∑
i
(mi −m′

i )
T
(
α1nnT + α2(I − nnT )

)
(mi −m′

i )

where α1 = 2.0 and α2 = 1.0 in our setting.

Contact point error. We found it important for users to be able to
see their virtual fingers touching when their physical fingers are
touching. To enforce this in our calibration phase, we ask the user to
touch their thumb to each of their fingertips, and then enforce this
contact during the optimization using a least squares constraint.

Econtact =
∑
i
∥LBS(θi , ci ) − LBS(θi ,di )∥

2
2

Here, ci represents the contact point on the thumb and di represents
the contact point on the other finger. Note that we do not know a
priori exactly where on each digit the contact occurs, so this location
is also optimized. To ensure each contact point lies on the surface,
it is parametrized using barycentric coordinates on the rest hand
mesh and allowed to slide from a triangle to its neighbors during
the course of the optimization.
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Fig. 6. Marker calibration progress. Three example poses are shown
here: thumb touching index finger (top row), thumb touching middle finger
(middle row), and spread pose (bottom row). During calibration, we jointly
optimize all the hand poses, the marker locations on the rest hand model
(red spheres), and the between-finger contact points (purple spheres). In
the first 10 iterations, the optimizer adjust the locations of the markers on
the hand to match the corresponding observed markers (orange spheres).
Starting from iteration 11, the contact constraints are activated and the
optimizer starts refining the contact points and their distance. The rightmost
column shows the hand poses, marker positions, and contact points after
the optimizer converges.

Implementation. We subdivide the original hand mesh once be-
fore optimization so that the contact points are able to slide more
smoothly along the surface. All the error terms are in the sum of
squares form and we use Levenberg-Marquardt method for opti-
mization. After each iteration, we update the markersM and contact
points C by looking for the closest point on the neighboring trian-
gles of the mesh model. The progress of the calibration can be seen
in Figure 6.

5 EVALUATION
Our CNN is trained using two NVIDIA Tesla M40 GPUs. We use
stochastic gradient descent as the optimizer and train the network
for 75 epochs. Each training iteration takes roughly 0.4 s using a
batch size of 256. The learning rate starts at 0.6 and drops by a factor
of 10 at the 50th epoch and the 70th epoch. Our runtime system
was tested on an Intel Core i7 3.5GHz CPU with NVIDIA GTX 1080
Ti GPU running Windows 10. It takes 1ms to run a forward pass
of the CNN and 2ms to run the inverse kinematics step. We only
evaluate the CNN when tracking fails for at least one marker, and
the entire real-time tracking system runs comfortably at 120Hz on
average.

Robustness of data augmentation. We evaluate the network per-
formance on a heldout dataset, and compare the different data aug-
mentation schemes. The Base network is trained with exactly 19
markers. An occlusion-augmented network (Base+O) is trained
by randomly omitting up to five markers from the input. A ghost-
augmented network (Base+G) is instead trained by randomly intro-
ducing up to two additional markers. Finally, a combined network
(Base+O+G) is trained with both occluded and ghost markers. We
then apply the same data perturbations to the Base test dataset
to generate Base+O, Base+G, and Base+O+G test datasets. As ex-
pected, data augmentation results in robust networks that generalize
well to difficult scenarios, without sacrificing on the base case. Ta-
ble 2 shows that while all networks are comparable on the Base test,
the Base+O+G network performs best on all other more difficult
tasks. We use this best-performing network in the rest of the paper.

Table 2. Data augmentation schemes evaluated on synthetic test
datasets. We augment the Base network of 19 input markers with up to five
occluded markers (Base+O) or up to two additional ghost markers (Base+G),
or with both occluded and ghost markers (Base+O+G). Values reported
here are labeling accuracy as the percentage of correctly predicted labels.
While all networks are comparable on the Base test, the Base+O+G network
outperforms the rest in the more challenging tests.

Test
Train Base Base+O Base+G Base+O+G

Base 97.76% 97.56% 97.80% 97.76%
Base+O 83.35% 92.87% 84.26% 93.51%
Base+G 92.31% 91.26% 94.87% 95.30%

Base+O+G 74.01% 81.88% 76.85% 85.81%

Evaluation on realistic test data. A more realistic test is to apply
our labeling network to motion capture sessions of different people
performing a wide range of tasks. For evaluation, we captured raw
marker sequences of the following actions from a participant not
in the training data: a single-hand-in-the-air motion without any
interactions; two hands interacting with each other; a hand play-
ing with a marker pen; and a hand playing with an Oculus Touch
controller. Each sequence contains different numbers of occluded
markers and ghost markers from the OptiTrack system. We first
apply our method to produce initial labels, then ask a human labeler
to manually correct for any mistakes to generate the ground truth
labels. Table 3 shows a considerable number of occluded markers
as the hand interacts with more complex objects.

We evaluate our network’s performance on these test sequences
against the ground truth. For comparison, we also show the same
statistics of the synthetic test dataset Base+O+G in Table 4. For a
simple sequence such as the single hand with few occlusion and
ghost markers, our network makes accurate predictions for almost
any pose. Performance drops on challenging hand-hand and hand-
controller sequences, but is comparable to the augmented synthetic
test data. The hand-pen sequences are particularly challenging since
the subject is asked to point the pen tip at the markers on the glove,
leading to confusion between the pen-tip marker and the hand
markers that impacts the occlusion recall score. The network is
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Table 3. Test datasets. #Frame is the total number of frames in a sequence.
#Gap is the total number of gaps in the sequence, where each gap is a
subsequence of one or more frames where at least one marker is missing.
#AGL is the average number of (sequential) frames per gap. And #AMF is
the average number of missing labels per frame, excluding frames with all
markers present (i.e., #missing labels over #frames with missing labels).

Test set #Frame #Gap #AGL #AMF
Single hand 4785 44 2.11 1.35
Hand-hand 3312 331 4.01 3.30
Hand-pen 4511 481 3.39 2.31

Hand-controller 2645 382 2.65 1.62

Fig. 7. Ambiguity frommissing markers. On the right is a ground truth
pose with the fingertip markers missing from the middle finger, the ring
finger, and the pinky (marked in purple). On the left is the pose where the
fingertip marker from the index finger has been incorrectly assigned to the
middle finger. Although this pose has a higher RMS error, it has sufficiently
low error that our system would consider it valid.

particularly robust to distractors, with high precision and recall
numbers in realistic cases when the number of ghost markers is
even larger than in the training set. However, it doesn’t perform
as well under a moderate number of occlusions, with the O recall
score being particularly low. We hypothesize that this may be in
part because occluded markers being selected randomly at train
time (rather than using a visibility test), limiting its ability to handle
real-world occlusions.

Another reason for the vulnerability to occlusion may be the over-
lapping motion range between fingers. When markers are missing,
several plausible poses may explain the same observations under
our RMS error check. For example, in Figure 7, the middle finger is
missing a marker on the middle fingertip. This could be explained
either by a missing marker on the middle fingertip, or by a miss-
ing marker on the index fingertip (and the index fingertip marker
assigned to the middle finger). Incorporating the tracking history
would help reduce such ambiguity. We could also train the neural
network to output its confidence about a prediction, or even output
a distribution over possible labeling [Bulat and Tzimiropoulos 2016;
Shih et al. 2015].

Comparison of tracking result. In practice, we do not evaluate the
network on every single frame, only those with failed tracking. A
successful re-initialization of labels can then help recover tracking
for subsequent frames. Therefore, when applied in real-time track-
ing, our system can accurately label all markers on over 90% of
frames for all test sequences (Table 5), making it practical for realis-
tic settings that are otherwise impossible without intense manual
clean-up effort.

We compare our real-time tracking results with Alexanderson
et al. [2017] against ground truth on the four captured test sequences
(Table 5). Since Alexanderson et al. [2017] is designed for a sparse
marker set requiring three markers on the back of the hand al-
ready labeled, it doesn’t perform well on a dense marker set with
a considerable amount of ghost markers or any of the three back
markers is occluded. We also tried to compare with the commercial
system Vicon [2018]. However, even with expert guidance, Vicon’s
calibrated skeleton was unable to label all the challenging frames
from our test dataset. Nonetheless, it is clear that our system out-
performs state-of-the-art real-time tracking methods on realistic
hand motions.

Sparse marker set. One advantage of using synthetic data is that
we can experiment with different marker layouts. To show our label-
ing pipeline also works for sparse marksets, we generate a training
dataset using the sparse marker layout from
Alexanderson et al. [2016], and follow our data
augmentation procedure to train a network for
labeling 13 markers (see right inset image) on
a hand. When testing on the synthetic dataset
and the same test sequences, we see a slight
decline in performance (Table 6), but the over-
all accuracy is still quite satisfactory. This test
demonstrates our network’s capability to han-
dle both dense and sparse marker sets.

User marker calibration. Our robust real-time tracking system
allows for interactive fine-tuning of marker layout for a user’s hand.
Even though the labeling system doesn’t require such knowledge,
accurate marker positions result in more precise hand pose that
permits finger contacts. Table 7 shows the performance comparison
with and without user marker calibration. When not every hand
marker is labeled, we use the predicted marker location from the
handmodel to assign labels to nearbymarkers.Without user-specific
marker calibration, this process is prone to labeling ghost markers
as hand markers, which causes a substantial drop in marker labeling
performance on the hand-pen sequence when the pen tip marker is
near the hand markers.

Reduced number of cameras. We use a 16-camera capture rig for
real-time tracking to achieve high quality motions under heavy
occlusion and noise. However, a greatly reduced setup is already
sufficient for capturing interesting hand motions. We selectively
turn off more than half of the cameras for tracking a single-hand-
in-the-air sequence. With increased occlusion, the system can still
successfully track almost all poses. In the 2875 frames captured,
95.55% of frames pass our preset IK error threshold, among which
92.32% have the correct labeling.

6 APPLICATIONS
We demonstrate the robustness and flexibility of our real-time hand
tracking system on a wide range of activities, including dexterous
manipulation and object interaction, sign language, dance, musical
performance, as well as using the hands as an input device for VR
applications (Figure 8). Our system is easy to set up and use for any
user. It takes less than two minutes for the user to put on the gloves
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Table 4. Network performance on test datasets. We compare network inference results on a synthetic dataset and four captured sequences, from a
participant not in the training set. We report Accuracy as the percentage of correctly predicted labels.Occlusion ratio and Ghost marker ratio are respective
fractions of the total expected number of labels. They provide some indication of the difficulty of a dataset. Our network is quite accurate when there are few
occlusions or ghost markers. Because we perform data augmentation aggresively in training, the network performs comparably in real sequences to a synthetic
one with similar numbers of occluded/ghost markers. Though our network is robust to a large number of ghost markers, it is more vulnerable to occlusions.

Test set Synthetic Single hand Hand-hand Hand-pen Hand-controller
# Labels 957201 181720 129002 179752 103323
Accuracy 85.81% 97.64% 84.08% 77.81% 85.32%
O ratio 12.24% 0.07% 2.73% 2.03% 1.78%

O precision 73.95% 38.91% 59.73% 52.65% 63.17%
O recall 64.64% 37.89% 25.57% 17.85% 28.44%
G ratio 5.27% 0.01% 10.63% 7.55% 4.50%

G precision 56.21% 87.50% 79.46% 79.09% 70.89%
G recall 39.77% 87.50% 61.55% 63.65% 52.78%

Table 5. Comparison of real-time tracking performance. This table
shows the number and ratio of correctly labeled frames.

Method [Alexanderson et al. 2017] Ours
Single hand 4330 (90.49%) 4785 (100.00%)
Hand-hand 981 (29.62%) 4477 (99.24%)
Hand-pen 402 (8.91%) 3101 (93.73%)

Hand-controller 1381 (52.21%) 2599 (98.26%)

and follow the marker calibration poses (see video). Afterwards,
they can readily move their hands comfortably and freely in the
capture volume, while their motion is tracked reliably in real-time.

Dexterous manipulation. Natural motions of hands interacting
with the environment or manipulation of everyday objects provide
invaluable insight for the reseach of biomechanics, usability, and
animation. Our hand tracking system can capture hands manip-
ulating objects in a cluttered environment, such as folding paper
under severe occlusion as shown in the video. Strong interactions
between hands or between hands and other body parts, such as
finger spelling and sign language, are handled gracefully by our
system.

Performance capture. Performance capture is integral to the cre-
ation of digital humans for entertainment and education. Its utility
in complicated scenarios however is often limited by the captur-
ing technology. For instance, dance movements may have frequent
occlusion and interactions. Playing musical instruments requires
close finger proximity and fast but subtle movements, as well as
interacting with the instrument itself. Using our hand tracking sys-
tem, we can successfully capture performances including tutting
and playing percussion, string, and woodwind instruments. These
performances can be captured using the same setup without special
instructions to the performers, all in real-time (Figure 8; top left).
Even though reflective surfaces on the musical intruments cause a
considerable amount of noise near the hands (the drum sequence
has up to 20 ghost markers per frame, please see video), our system
still produces accurate hand motions.

Fig. 8. Our system enables a wide range of applications Top Left: A
view of a guitar chord from the player’s perspective (ghost markers are
rendered as purple spheres.) Top Right: Manipulation of virtual objects
in VR. Bottom Left: Typing with a virtual keyboard. Bottom Right: 2D/3D
drawing with a virtual stylus.

Virtual reality input. Hands are an attractive form of input in
VR as we are accustomed to using our hands to interact in 3D
environments and our hands are always readily available. With
high-fidelity hand tracking, we can begin to explore the possibilty of
using hand input in virtual environments, such as for virtual object
manipulation (Figure 8; top right), interaction with virtual buttons
and screens, typing on a virtual keyboard, and 2D/3D drawing
(Figure 8; bottom). Key to the success of hand input is the accuracy
and robustness of the hand motions. Only with a reliable hand
tracking system can we forgo the questions on hand motion quality,
and instead focus on developing the interaction model itself.
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Table 6. Test with a sparse marker set. Similar to Table 4, we compare network inference results on four sequences, but here we use a network trained for a
sparse marker set. Comparing to Table 4, we see a slight drop in performance, but overall similar characteristics.

Test set Synthetic Single hand Hand-hand Hand-pen Hand-controller
# Labels 680680 124313 87292 126693 71778
Accuracy 84.89% 96.90% 82.14% 72.45% 86.59%
O ratio 10.96% 0.09% 1.67% 2.28% 1.83%

O precision 60.75% 59.29% 76.06% 41.93% 89.05%
O recall 66.85% 59.29% 17.45% 10.82% 29.68%
G ratio 7.64% 0.01% 10.74% 10.84% 6.09%

G precision 47.29% 81.25% 66.52% 65.47% 68.60%
G recall 54.10% 81.25% 57.64% 53.93% 54.84%

Table 7. Performance comparison with/without user marker calibra-
tion. First number is the percentage of frames which pass our preset IK
threshold (8mm RMS) (i.e., number of valid tracking frames / number of
overall frames) while the second number is the fraction of correctly labeled
frames as valid tracking frames (i.e., number of correctly labeled frames /
number of valid tracking frames)

Test set With calibration Without
Single hand 100.00% / 100.00% 98.27% / 95.62%
Hand-hand 99.18% / 94.40% 95.56% / 85.18%
Hand-pen 99.38% / 98.95% 99.29% / 77.12%

Hand-controller 99.17% /99.09% 97.58% / 89.54%

7 CONCLUSION
We have proposed a fast and robust solution for tracking hands with
an optical motion capture system. The crux of our approach is a
novel labeling step that applies a neural network to resolve marker
labeling by posing it as a keypoint estimation problem on 2D images.
We have demonstrated that our deep labeling technique can be made
robust to hand size, hand proportions, and different types of motions
simply by generating a synthetic dataset with appropriate variation.
Furthermore, data augmentation with artifacts such as occluded
markers and ghost markers are effective at improving robustness
to these artifacts on both real and synthetic data. Our technique is
equally applicable to sparse and dense marker sets.
Taking advantage of efficient evaluation of neural networks on

modern GPU hardware, our system easily runs at 120Hz, enabling
new applications for hand motion capture such as usability research
and real-time interaction prototyping in virtual reality. Our tech-
nique also provides a practical method for collecting large bodies of
natural, accurate hand motion that can be used as ground-truth data
for many research problems. We are releasing all of our synthetic
training data and trained convolutional model with the publication
of this paper.

8 DISCUSSION AND FUTURE WORK
Our current conventional VGG-style labeling network is easy to
train, fast to evaluate and generates accurate predictions. There
are definitely other applicable network architectures that may out-
perform our vanilla CNN structure. For instance, our method only

utilizes the information from a single frame to determine the label-
ing of each marker. In effect, we are making a hard decision at the
labeling step that cannot be overriden during tracking or inverse
kinematics. Recent work in computer vision has explored predicting
multiple hypotheses or regression to probability distributions. Multi-
ple hypothesis tracking or a recurrent neural network, which take in
account of temporal information from previous frames would lead
to more accurate results. At the same time, clustering is required at
the initialization of tracking. Although it fails on 50% of frames due
to random hand assignment, at 120Hz a few missed frames at the
start of tracking is barely noticeable to the user. Future work could
explore labeling the two hands jointly when clustering fails.

We have addressed marker set calibration, but have not presented
a general method for also calibrating the skeleton of the user. (The
approximate size of the user’s hand is selected a priori in our experi-
ments.) Future work should be able to leverage priors on hand shape
to calibrate the hand shape and marker placement simultaneously
from motion sequences.

We have shown just a few examples of synthetic data augmenta-
tion to address artifacts such as occluded markers, but this could be
extended to more robust labeling of hand-hand interaction, hand-
body interaction or even multi-person interactions. Finally, nothing
about this technique is specific to a particular marker layout or to
human hands. We hope to motivate a new class of motion capture
algorithms that make use of deep labeling for tracking dense marker
sets on human bodies or even on animals.
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