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Figure 1: Our adaptive tracking model conforms to the input expressions on-the-fly, producing a better fit to the user than state-of-the-art
data driven techniques [Weise et al. 2011] which are confined to learned motion priors and generate plausible but not accurate tracking.

Abstract

We introduce a real-time and calibration-free facial performance
capture framework based on a sensor with video and depth input.
In this framework, we develop an adaptive PCA model using shape
correctives that adjust on-the-fly to the actor’s expressions through
incremental PCA-based learning. Since the fitting of the adaptive
model progressively improves during the performance, we do not
require an extra capture or training session to build this model. As
a result, the system is highly deployable and easy to use: it can
faithfully track any individual, starting from just a single face scan
of the subject in a neutral pose. Like many real-time methods, we
use a linear subspace to cope with incomplete input data and fast
motion. To boost the training of our tracking model with reliable
samples, we use a well-trained 2D facial feature tracker on the in-
put video and an efficient mesh deformation algorithm to snap the
result of the previous step to high frequency details in visible depth
map regions. We show that the combination of dense depth maps
and texture features around eyes and lips is essential in capturing
natural dialogues and nuanced actor-specific emotions. We demon-
strate that using an adaptive PCA model not only improves the fit-
ting accuracy for tracking but also increases the expressiveness of
the retargeted character.
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1 Introduction

The essence of high quality performance-driven facial animation is
to capture every trait and characteristic of an actor’s facial and ver-
bal expression and to reproduce those on a digital double or crea-
ture. Even with the latest 3D scanning and motion capture tech-
nology, the creation of realistic digital faces in film and game pro-
duction typically involves a very complex pipeline requiring inten-
sive manual intervention. Long turn-around times are usually re-
quired for generating compelling results, resulting in high produc-
tion costs. Consequently, the exploration of real-time facial perfor-
mance capture as pre-visualization has gained increasing attention
to help directors plan shots more carefully, animators quickly exper-
iment with face models, and actors get into their characters when
driving a virtual avatar. For all these applications, it is desirable
to use a low impact and easily deployable acquisition setup, since
performance capture often needs to be on-location, in an everyday
environment, or even at an animator’s desk.

While 2D video systems are often considered the most common and
flexible solution, real-time 3D sensors such as Microsoft’s Kinect
have the ability to capture dense depth input data, while being ro-
bust to illumination changes and occlusions. For real-time facial
tracking, linear models such as blendshapes or PCA models are of-
ten preferred due to their level of expressiveness and their com-
pact representation for efficient processing. However, creating a
linear model that can span the full spectrum of facial expressions
for a specific person would require a large collection of expres-
sion measurements [Ekman and Friesen 1978] or a lengthy training
session [Weise et al. 2009]. To improve deployability, data-driven



techniques are often used to reduce the amount of pre-processing
at the cost of synthesized reconstructions from priors that may look
believable but not necessarily capture the characteristics of the spe-
cific actor [Li et al. 2010; Weise et al. 2011].

We propose a real-time facial animation framework where an adap-
tive PCA model, based on correctives (see Section 5), rapidly adapts
to the expressions of the performing actor during the tracking. The
process begins with an initial 3D scan of the subject in a neutral
pose. From there, a customized digital model and an initial set of
generic linear blendshape expressions are automatically generated.
We track the face by solving for the best fit to the input data using
these generic blendshapes. This step is followed by fitting a re-
fined linear model onto the input data using adaptive PCA shapes.
The adaptive PCA model consists of anchor shapes and corrective
shapes. The anchor shapes are derived from the initial blendshapes
to prevent the tracking model from converging to a bad model (drift-
ing) due to noisy input data. The corrective shapes are used to learn
the distinct look and expressions of the actor during tracking. The
adaptive PCA model can therefore capture facial expressions that
cannot be represented by the initial blendshapes. To train the cor-
rectives, we warp the result of the adaptive PCA fit to the current
input depth map to discover new shapes that are outside of the adap-
tive PCA space. This tight out-of-adaptive space deformation uses
3D depth map and 40 2D facial features (lip contours, eye con-
tours, and eyebrows). Our 2D facial features are obtained from Live
Driver, an off-the-shelf real-time feature tracking technology from
Image Metrics [ImageMetrics 2012]. Live Driver implements a
data-driven tracking algorithm that works on any individual, un-
der any lighting. While no calibration is needed for Live Driver,
capturing a single neutral pose further improves tracking accuracy.
The optimization of our adaptive PCA space is obtained through
an incremental PCA learning approach based on the expectation-
maximization (EM) algorithm of Roweis [1998].

Our depth sensor-based performance capture system (see Figure 2)
requires no training phase and can be instantly used once a neutral
expression has been captured. Whether in communication appli-
cations or interactive games involving virtual avatars, our system
offers a general ease-of-use tool which makes it readily deployable,
while accurate tracking is ensured with the on-the-fly correctives.
In a more professional setting such as film production, actors may
choose to use this algorithm as a calibration tool to build an opti-
mal tracking model for their faces without going through a large and
challenging set of prescribed facial action units—and immediately
test the tracking quality. Since we train our model with fine-scale
deformations around eyes and mouth regions, our framework is par-
ticularly effective in recovering emotions, conversations, and subtle
nuances of actor-specific expressions. While this paper focuses on
improving the tracking quality and performance capture workflow
for a real-time system, we also demonstrate that more accurate and
expressive facial retargeting can be achieved.

Contribution. Our real-time markerless facial animation frame-
work can be instantly used by any subject—without training—and
ensures accurate tracking using an adaptive PCA model based on
correctives that adjusts to the user’s expressions on-the-fly.

2 Related Work

Facial performance capture is a fundamental thread in computer an-
imation, often involving many application-specific technologies for
acquisition, modeling, tracking, and retargeting [Pighin and Lewis
2006]. This paper focuses mainly on the tracking problem, since
we aim at capturing actor-distinct motions in a low impact set-
ting. Still popular in the visual effects and gaming industry, many
early methods involve marker dots for tracking due to their relia-
bility [Williams 1990; Guenter et al. 1998]. Besides being lim-
ited to production environments, markers are typically sparsely dis-
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Figure 2: Our system uses a Kinect depth sensor and runs in real-
time on a consumer level computer.

tributed, requiring manual corrections or physical deformation pri-
ors [Bickel et al. 2008] to reintroduce the fine-scale dynamics.

Purely video-based facial tracking systems that do not require any
markers are aimed at fully uncontrolled environments where a 2D
parametric shape model is used [Li et al. 1993; Bregler and Omo-
hundro 1994; Black and Yacoob 1995; Essa et al. 1996; Bregler
et al. 1997; Pighin et al. 1999; Decarlo and Metaxas 2000]. Al-
though 2D facial tracking remains difficult, data-driven algorithms
were introduced to achieve real-time performance. These include
active appearance model [Cootes et al. 1998], Eigen points [Covell
and Bregler 1996], the more recent landmark prediction techniques
of Saragih and colleagues [Saragih et al. 2011], and the commercial
solution, Live Driver, from Image Metrics [ImageMetrics 2012].
Even though video-based tracking can be used to drive 3D facial an-
imations convincingly [Chuang and Bregler 2002; Chai et al. 2003],
these methods only extract features around prominent regions (lips,
nose, eyes, etc.) for a limited set of facial expressions. Detailed 3D
facial tracking from video is generally achieved at the cost of a con-
trolled environment, expensive computation, and the use of a care-
fully crafted 3D tracking model [Borshukov et al. 2005; Alexander
et al. 2009; Vlasic et al. 2005].

Real-time 3D acquisition systems produce a continuous stream of
high-resolution depth maps and can effectively capture fine ge-
ometric details such as wrinkles and folds. While high-quality
3D data can be obtained from multi-view or photometric stereo
techniques [Bradley et al. 2010; Fyffe et al. 2011; Beeler et al.
2011; Valgaerts et al. 2012], active methods such as structured
light [Rusinkiewicz et al. 2002; Zhang and Huang 2004] are more
robust in general environments and can generate 3D points at inter-
active rates. To capture facial deformations, a preconstructed 3D
template model is warped through a sequence of 3D input scans.
Correspondences are computed using variants of non-rigid regis-
tration and texture tracking [Zhang et al. 2004; Li et al. 2009; Fu-
rukawa and Ponce 2009; Bradley et al. 2010; Beeler et al. 2011] or
more recently with a joint optimization between capture and track-
ing [Valgaerts et al. 2012].

The ability to track detailed facial expressions from a 3D sensor in
real-time has been demonstrated by Weise and coworkers [2009]
using a linear PCA subspace that has been trained with a very
large set of pre-processed facial expressions. Since an extended
training session with a careful choice of facial action units is re-
quired for every actor, the system is less suitable for the general
audience. Moreover, additional training sessions may be required
to achieve satisfactory tracking quality. To reduce the amount of
training and enable retargeting, Li and colleagues [2010] introduced
an example-based blendshape optimization technique that only re-
quires a limited number of random facial expressions as input to
generate a full set of FACS blendshape expressions [Ekman and
Friesen 1978]. While geometric details are recovered from the in-
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Figure 3: Construction of initial blendshapes using morphable face
models for the neutral expression. We use deformation transfer to
produce FACS-based generic expressions.

put training examples, the interpolated expressions often lack the
subtle traits of the actor. As shown in the depth sensor-based facial
animation pipeline of [Weise et al. 2011], the use of example-based
blendshapes in combination with data-driven animation priors often
result in poor tracking accuracy (especially around mouth and eye
regions). While this capture method is sufficient to produce plau-
sible results in the context of puppeteering, it fails to accurately
capture the lip movements and high-frequency geometric details
needed to convey nuanced emotions and micro-expression.

The general idea of updating a tracking model during a perfor-
mance has been explored in the field of computer vision for track-
ing general objects. Collins and colleagues [2005] proposed a
method that updates color features on-the-fly to improve object-
to-background discrimination. Grabner and coworkers [2008] pro-
posed a more elaborate feature selection scheme for on-line boost-
ing; and [Kalal et al. 2009] demonstrated growing discriminative
template databases during tracking. All these techniques focus
on general 2D object detection problems with a level of accuracy
which falls short of our requirements. While a pre-trained PCA
subspace can enable real-time face tracking, constructing such a
PCA model from a large database using traditional SVD is imprac-
tically slow [Pearson 1901; Kirby and Sirovich 1990]. There exist
many incremental variants of the PCA algorithm that do not require
a full PCA recomputation for a stream of incoming data, such as
[Gu and Eisenstat 1993], [Chandrasekaran et al. 1997], and [Skocaj
and Leonardis 2003]. We use an EM-based approach derived from
[Roweis 1998] because of its fast convergence.

3 Pipeline Overview

Capturing the Neutral Face. Our pipeline begins with the con-
struction of a 3D model from a face scan in neutral expression (see
Figure 3). Similar to [Weise et al. 2011], we first aggregate multiple
input depth map frames using a rigid alignment based on the fast it-
erative closest point method (ICP) [Rusinkiewicz and Levoy 2001]
and volumetric integration [Rusinkiewicz et al. 2002]. We obtain
a merged 3D point cloud with better coverage of the neutral face.
We then warp the model of a statistically average face onto the inte-
grated scan using a linear fit of PCA modes obtained from 200 hu-
man subjects as described in [Blanz and Vetter 1999; Paysan et al.
2009]. The fitting consists of an optimization that solves for both
the global rigid transformation and the PCA coefficients. To capture
details that are not present in the PCA model, we shrink-wrap the
resulting model onto the input scan using the non-rigid ICP algo-
rithm of Li and coworkers [2009]. For both deformable alignment
steps, PCA and non-rigid ICP, we use point-to-plane constraints on
the input scans and point-to-point 2D feature constraints (lips, eyes,
and eyebrows) obtained from Live Driver [ImageMetrics 2012].

Building Initial Blendshapes. Once the neutral face model of
the actor is reconstructed, we automatically generate a set of ini-
tial blendshapes from a collection of 23 FACS inspired generic ex-
pressions using the deformation transfer algorithm of Sumner and
colleagues [2004] (see Figure 3). The initial blendshapes are per-
sonalized but crude approximations of the actor’s real expressions.

Tracking with Blendshapes and Adaptive PCA. After creating
the initial blendshapes of the actor, we begin tracking the actor’s
face (see Figure 4). We first solve for a global rigid transforma-
tion using fast rigid ICP [Rusinkiewicz and Levoy 2001] as before;
we then perform an initial blendshape fit for every input frame us-
ing both 3D point constraints on the input scans and 2D facial fea-
tures [ImageMetrics 2012]. The fitting is refined using a Laplacian
deformation algorithm [Botsch and Sorkine 2008] with the same
constraints, followed by a projection onto an adaptive PCA space
since the input data are noisy and incomplete. The adaptive PCA
space is an orthonormal basis and consists of A anchor shapes and
K additional corrective shapes.

Training the Correctives. We initialize the anchor shapes with
A = 23 orthonormalized vectors from the initial blendshapes and
learn K corrective shapes to improve the fitting accuracy over time.
To train the correctives, we first collect new expression samples
that fall outside of the currently used adaptive PCA space. These
samples are obtained by warping the result of the initial blendshape
fit to fit the current input depth map and 2D facial features using
again a per-vertex Laplacian deformation algorithm. These samples
are used to refine the corrective shapes using the incremental PCA
technique described in Section 5.

Expression Retargeting. The initial blendshape coefficients that
are solved in the beginning could be immediately used for expres-
sion retargeting. However, we found that more expressive retarget-
ing is obtained by re-solving for blendshape coefficients using the
final mesh output.

4 Real-time Tracking

The first step of our tracking pipeline (see Figure 4) consists of
rigidly aligning the tracked 3D model of the previous frame to
the current input frame. Next, we fit the initial blendshapes us-
ing 3D depth map and 2D facial feature constraints. The resulting
blendshape fit is represented by a mesh with vertices v1 = b0 +Bx,
where b0 is the neutral expression mesh, the columns of B are the
FACS-based expression meshes, and x forms the blendshape coef-
ficients. We further refine the result using our progressively up-
dated adaptive PCA model. This fitting is divided in two stages.
First, we perform a Laplacian deformation using the same input
constraints and obtain the mesh with vertices v2 = v1 +Dv1, where
Dv1 are the per vertex displacements. The Laplacian deformed
mesh is then projected to the adaptive PCA model producing the
mesh v3 =

�
MM>(v2 �b0)

�
+b0, where the columns of M are the

bases of the adaptive PCA model. Our final output is an additional
Laplacian deformation on top of the adaptive PCA result and we
obtain v4 = v3 +Dv3. Since depth maps are noisy, we only use 2D
facial features as constraints. However, for the training samples of
the incremental PCA algorithm, we do use the 3D depth constraints
in addition to 2D features. In practice, we use v2 as training sam-
ples. Each stage is designed for real-time performance as well as
resistance to large occlusions and outliers.

4.1 Rigid Motion Tracking

To reduce the amount of data captured by the depth map, we first
crop the input frame with a face bounding window (200⇥200 pix-
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Figure 4: Our real-time facial animation pipeline based on an adaptive tracking model. The heat map of the fitting in adaptive space shows
the difference between our adaptive PCA model to the initial blendshape fit. The color of the out-of-adaptive-space deformation illustrates
the difference between the tracking output and the current adaptive PCA model. This error is decreased with every incoming training sample.

els) centered around the tracked model from the previous frame.
The initial face detection is obtained from the 2D bounding box
of the facial features and re-detection is only performed whenever
the face model is lost (i.e., when convergence fails during rigid
motion tracking). We then track the result using the fast projec-
tion variant of the rigid ICP algorithm with the point-to-plane met-
ric [Rusinkiewicz and Levoy 2001]. We prune correspondences that
are 25 mm away. Rigid ICP finishes when the average distance of
unpruned correspondences to the depth map is below 3 mm.

4.2 Fitting with Initial Blendshape

Similar to ICP, we fit the linear blendshape model to the input
scans by alternating between finding per-vertex correspondences
and solving for blendshape coefficients. Let v1

i (x) = (b0 +Bx)i
be the i-th blendshape mesh vertex, b0 the neutral expression mesh,
the columns of B the A = 23 meshes of FACS-based expressions,
and x the blendshape coefficients. We then use the following point-
to-plane fitting term:

cS
i (x) = n>

i (v
1
i (x)�pi) , (1)

where pi is the point of the depth map that has the same camera
space coordinate as v1

i , and ni the surface normal of pi. We use
point-to-plane instead of point-to-point constraints for more robust
convergence in the optimization.

We pre-associate the 40 sparse 2D facial features to a fixed set of
mesh vertices of our tracked 3D model. We then formulate the
facial feature fitting term as vectors between the 2D facial features
and their corresponding mesh vertices in camera space:

cF
j (x) =


1 0 �ux

j
0 1 �uy

j

�
P v1

j(x) , (2)

where u j = [ux
j,u

y
j]
> is the j-th 2D facial feature position and P3⇥3

the camera projection matrix.

We solve for the blendshape coefficients x = [x1 . . .xA]
> using the

terms from Equation (1) and (2) and minimize the following L2

energy:
min

x Â
i
(cS

i (x))
2 +wÂ

j
kcF

j (x)k2
2 ,
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Figure 5: Influence of each stage on the full tracking pipeline.

where w = 5 · 10�5 is the weight of the facial feature constraints
and xl 2 [0,1] are the blendshape coefficients. We use the fast it-
erative projection method from Sugimoto and colleagues [1995] to
solve the bounded dense linear system. Due to the localized nature
of blendshapes and because the coefficients are bounded, large mo-
tions can be recovered very effectively as shown in Figure 5. We
perform a fixed number of iterations between this optimization and
the closest point search (in our case 3 times). We apply the standard
Kalman filter [Welch and Bishop 1995] to blendshape coefficients
to effectively reduce the noise caused by the depth-sensor data. The
linear state variable for predicting the position and velocity has a
process noise of 0.05 and measurement noise of 0.02.

4.3 Fitting in Adaptive PCA Space

We refine the tracking by warping the blendshape model to a linear
adaptive PCA model whose space is spanned by the A+K PCA
shapes which are stacked to form a matrix M = [MA,MK ]. The A
columns of MA are the orthonormalized vectors of the initial blend-
shapes and form the anchor blendshapes. The K columns of MK
lie in the null space of MA and represent the corrective shapes MK .
The correctives capture the fine-scale details, not present in the ini-
tial blendshape model. Bounded linear optimization as used with
the initial blendshape fitting is not possible with the adaptive PCA
shapes because the deformations are now global (each PCA mode



affects the entire face). Our solution is to use a Laplacian defor-
mation to establish reliable correspondences between the tracked
model and the input scan before projecting the solution to the adap-
tive PCA space.

Fast Laplacian Deformation. We perform a Laplacian deforma-
tion [Botsch and Sorkine 2008] v2

i = v1
i + Dv1

i using both depth
and 2D facial feature constraints. The Laplacian smoothing term
regularizes the vertex displacements Dv1

i constrained by the sparse
2D features, and also reduces the spatial high-frequency noise in-
troduced by the 3D depth sensor. The deformation optimization
solves for all the vertices that are in the frontal part of the head
model subject to Dirichlet boundary conditions.

Even though the linear systems of Laplacian deformations are
sparse, matrix factorization such as Cholesky decomposition can
still be problematic for real-time performance (our tracking meshes
have 6918 vertices where the frontal 3480 are used for deforma-
tion). We therefore rely on optimization constraints where pre-
factorization is possible (i.e., the left hand sides of the sparse lin-
ear system remain constant over time). For instance, point-to-plane
constraints are not suitable because the left hand side needs to be
recomputed in each iteration.

We use a point-to-point fitting term between every mesh vertex and
its corresponding projection into camera space:

cP
i (Dv1

i ) = Dv1
i � (pi �v1

i ) , (3)

and 2D feature terms using a weak projection formulation:

cW
j (Dv1

j) =

2

64
1 0 �(ux

j � v1,x
j )

0 1 �(uy
j � v1,y

j )
0 0 1

3

75P Dv1
j �

2

4
0
0

(pz
j � v1,z

j )

3

5 ,

(4)

where p j = [px
j, py

j, pz
j] and v1

j = [v1,x
j ,v1,y

j ,v1,z
j ]. We rephrase this

term compactly as:

cW
j (Dv1

j) = H j(u j)P Dv1
j �d j . (5)

We define cotangent weights [Botsch and Sorkine 2008] w.r.t. the
neutral mesh for the Laplacian smoothing terms:

CL(Dv1) = L(b0)

2

64
Dv1

1
...

Dv1
N

3

75= L(b0)Dv1 . (6)

We can stack Equation (3), (5), and (6) into a single over-
constrained linear system.

2
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Dv1 = a , (7)

where Q is a 3F ⇥ 3N matrix stacked from the projection matrix
P from Equation (4), I denotes a 3N ⇥ 3N identity matrix, w1 =
0.1 is the weight for the point-to-point constraints, w2 = 100 is the
weight for the Laplacian regularization constraint, and a contains
all the constant terms from the constraints. The above system can
be rewritten as GKDv1 = a, where the least-square solution can be
readily computed using the Moore-Penrose pseudoinverse:

Dv1 = K>(KK>)�1G�1a .
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Figure 6: Out-of-adaptive-space deformation for tracking output
and input to incremental PCA.

Because K is sparse and constant, we only need to pre-factorize
KK> once. Moreover, G�1 can be trivally computed thanks to
its square and sparse structure. Therefore, we can solve the entire
linear system efficiently. We use the sparse LDLT solver from the
C++ Eigen Library for the pre-factorization.

PCA Subspace Projection. The second step consists of project-
ing the Laplacian deformed mesh onto the continuously improving
adaptive PCA space. The PCA subspace projection is formulated
as follows:

v3 =
⇣

MM>(v2 �b0)
⌘
+b0 ,

where v3 = [v3
1 . . .v

3
N ]

> and v2 = [v2
1 . . .v

2
N ]

>. In particular, v3 =

My + b0, where y = [y1 . . .yA,yA+1 . . .yA+K ]
> are the resulting

adaptive PCA coefficients. This projection is necessary because
the mesh obtained from the Laplacian deformation may contain
outliers and visible artifacts due to the noisy and incomplete in-
put depth map. The adaptive PCA model however is trained from a
large number of samples that are not outliers. Moreover, the accu-
mulation of multiple frames during incremental PCA also averages
out the artifacts caused by incomplete input data.

4.4 Out-of-adaptive-space Deformation

As illustrated in Figure 4, we use two additional warping steps to
generate out-of-adaptive-space deformations: (1) to feed the incre-
mental PCA algorithm (Section 5) with reliable data and (2) to gen-
erate the final output mesh. To train the adaptive PCA model, we
could deform the mesh v3 to fit the current frame using the Lapla-
cian deformation by solving the system defined by Equation (7)
where w1 = 0.1 and w2 = 100. In practice, the resulting mesh would
be very similar to v2, so we use v2 directly to save the cost of an ex-
tra computation of Laplacian deformation. While the results from
the adaptive PCA space are already superior to those obtained from
the initial blendshapes, we further refine the accuracy using an ad-
ditional Laplacian deformation with only the 2D facial features as
constraints and obtain v4 = v3 +Dv3 by setting w1 = 0 (or simply
eliminating the corresponding rows) and w2 = 100 (see Figure 6).

5 Incremental PCA

We use the resulting out-of-adaptive-space meshes from Section 4.4
as input data to train the adaptive PCA model for improved track-
ing accuracy (see Figure 7). As mentioned previously, the adaptive
model M= [MA,MK ] = [m1 . . .mA,mA+1 . . .mA+K ] consists of an-
chor and corrective shapes. The anchor shapes prevent the adap-
tive tracking model from drifting and are computed as the principle
components of the initial blendshapes; hence BB> = MADM>

A .

For every incoming out-of-adaptive-space mesh v2, the incremental
PCA algorithm verifies that the sample is “valid” (see definition
below) before updating MK . Because we only want to update the
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Figure 7: The effect of correctives during tracking with continu-
ously updated adaptive PCA model. The heat map shows the differ-
ence between the final tracking and the adaptive PCA model. The
error decreases rapidly when new expressions are learned.

corrective space spanned by MK , we define the input samples s =
(v2 �b0)� (MAM>

A )(v
2 �b0) as the projected residuals onto the

anchor space. A sample is considered “valid” if it is sufficiently far
away from the anchor space MA, (i.e., ksk2

2 > 1) and if it is not an
outlier (i.e., ksk2

2 < 100).

Because a continuous computation of the correctives cannot be
achieved in real-time using standard PCA, we use the iterative EM
algorithm of [Roweis 1998] which progressively approximates a
solution of MK given a collection of new valid samples S. The
samples are collected with a buffer S = [s1 . . .sS], where S = 200.
The first incremental PCA update happens once the buffer is full;
then MK is recomputed for every valid incoming sample.

We initialize MK with the first K valid samples and orthogonalize
them via standard QR factorization. Because the samples are al-
ready orthogonal to MA, M is semi-orthonormal; the columns are
normalized and orthogonal to each other.

The EM algorithm [Dempster et al. 1977] is generally used to
estimate probabilistic models with hidden states, such as Hidden
Markov Models, Mixture of Gaussians, or Mixture of Experts.
In our case, the hidden state variables are the coefficients YK =
[y1 . . .yS] of our model represented by the corrective shapes MK .
EM iterates between an E-step (to find the “E”xpected value of the
hidden state, given a model guess) and an M-step (to “M”aximize
the expected model likelihood given the hidden states). In particu-
lar, [Roweis 1998] proves that the iterative estimations of MK con-
verge to the true PCA solution using the EM algorithm. We sketch
out the EM algorithm for our domain:

1. E-step. compute the corrective space coefficients YK from the
input samples S given a guess of the corrective shapes MK :

YK = (M>
K MK)

�1M>
K S .

2. M-step. update the corrective shapes MK from the input sam-
ples S given the corrective space coefficients YK :

MK = SY>
K (YKY>

K )
�1 .

We repeat the above EM steps twice and use QR factorization again
to orthonormalize MK (EM does not have any orthonormal con-
straints). The resulting MK replaces the old corrective shapes in
M. When the dimension K of the corrective space is too small, our
algorithm fails at capturing fine-scale actor-specific details. If K is
too large, undesired high-frequency noise can be learned into the

tracking with
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tracking with
correctives

retargeting with
blendshapes

retargeting with
correctives

Figure 8: We transfer blendshape coefficients for retargeting.

adaptive PCA model. We use K = 7 for all our examples. In gen-
eral the buffer size S should be chosen as large as possible, as it
keeps a longer history of collected samples; but if S is too large, the
algorithm slows down.

6 Facial Retargeting

While our first initial blendshape result provides blendshape coef-
ficients that can be used for facial retargeting, re-solving for the
blendshape coefficients using the optimization in Section 4.2 and
the final output mesh vertices as constraints inevitably improves
the retargeting quality. Mapping back to blendshape space is nec-
essary for retargeting since the adaptive tracking model lies in the
PCA space. More elaborate techniques such as example-based fa-
cial rigging [Li et al. 2010] could be used, but our system would no
longer be calibration free. The extracted blendshape coefficients x
are simply transferred to a compatible blendshape model of a target
character (see Figure 8).

7 Results

anger joy sadnesssurprise

ou
r m

et
ho

d
[W

ei
se

 e
t a

l. 
'1

1]

disgust fear

in
pu

t d
at

a

Figure 9: Even though no training is involved, our adaptive model
captures emotions more accurately than [Weise et al. 2011]

Evaluation. Figure 5 compares the result of the full tracking
pipeline to that obtained with individual steps omitted. All stages
capture more details than a pure blendshape fit. Also see the bene-
fit of using an initial blendshape fit to improve the optimization of
the adaptive PCA fitting stage. When the Laplacian term is left out
during this optimization, the 2D facial feature constraints become
less effective. The final out-of-adaptive space deformation can pro-
duce expressions that are not yet trained in the adaptive PCA model.
Figure 6 shows the two versions of the out-of-adaptive space defor-
mation. The warp for the tracking output uses only 2D feature con-
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Figure 10: Additional results and comparisons of our real-time facial animation system.
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Figure 11: The vertices v4 of the out-of-adaptive space deformation are the final facial tracking output. The average distance between these
vertices and the anchor shape space MA is shown in green; and the full adaptive PCA space M in blue. We show that tracking is more
accurate with our adaptive tracking model than with initial blendshapes. Whenever a new expression occurs, the error drops rapidly (red).

straints and contains less high-frequency noise as opposed to the
one for the incremental PCA, which also uses depth data.

The fast convergence of our incremental PCA algorithm is demon-
strated in Figure 11. We observe that very few updates are neces-
sary to produce a good fit between the adaptive PCA model and the
input scans. Also shown in the accompanying video, Figure 7 vi-
sualizes the evolution of the correctives for each update on two ex-
amples. Whenever the actor performs a new expression that could
not be captured by the current adaptive PCA model, we measure a
large error between the adaptive PCA fit and final tracking. This
error decreases rapidly as new training samples are provided to our
incremental PCA algorithm. We also learn that a higher number
of anchor shapes improve the fitting accuracy since a more faithful
shape prior is introduced.

Comparison. We show that our real-time facial tracking algo-
rithm can adapt to a wide variety of actors and produce retargeting
results that match the real performance more accurately than the
current state-of-the-art method [Weise et al. 2011] (see Figure 1
and 10). The adaptive PCA model learns all the fine-scale details
after only a few updates, faithfully capturing and reproducing emo-
tional actor-specific expressions and subtle lip movements. Figure 9

compares both methods on the six basic human emotions and shows
that an accurate tracking model is essential to capture these charac-
teristics. We refer to the accompanying video to best appreciate the
dynamics and geometric nuances captured by our method.

While our method does not require any training except for a single
neutral face scan, the example-based facial rigging [Li et al. 2010]
step of [Weise et al. 2011] requires at least 7 input examples to build
a reasonable blendshape for tracking. Their entire process takes
around 5 minutes, involving some manual corrections to adjust the
non-rigid alignment. Our method can be used instantly and the full
range of expressions can be performed in less than a few seconds
without any manual intervention.

Performance. For every input frame, rigid motion tracking takes
3.2 ms, fitting with initial blendshapes 3 ms, fitting in adaptive
space 9 ms, and each out-of-space deformation 4.2 ms. One update
of incremental PCA (two iterations of EM steps) takes 3 ms. Our
code does not involve GPU computation, but is multi-threaded on
CPU. Timings (including I/O operations) are executed on a 2.6 Ghz
quad-core Intel Core i7 with 16GB RAM (2012 MacBook Pro). We
obtained slightly more stable results using the short range Prime-
sense Carmine 1.09 depth sensor than with Microsoft’s Kinect.



8 Discussion

Compared to existing state-of-the-art techniques, our real-time
facial animation system achieves superior tracking fidelity and
does not require expression calibration since our adaptive tracking
model rapidly personalizes to different actors on-the-fly.

We have shown that combining 3D depth maps and sparse 2D facial
features is essential for accurate tracking using our adaptive PCA
model. Realistic real-time facial performance capture for high-
end pre-visualization in feature films and game production becomes
possible. Previously, actor specific emotions and natural dialogues
could only be achieved with considerable manual corrections by an
artist, or with more sophisticated acquisition systems. Because of
the increased stability for real-time retargeting, our system is also
suitable for ADR sessions or actors to practice their performances
with interactive visual feedback of their digital characters.

Broader Impact. Our method allows the actor to use the system
instantly once a neutral face pose has been captured. As a result, our
technology can be immediately applied to general consumer appli-
cations such as virtual avatars in communication or performance-
driven gaming experiences. Our technique also opens up new do-
mains for capturing non-cooperating subjects that refuse to comply
with any training protocols, such as babies, patients with movement
disorders, or rapidly changing users in public places such as kiosks,
amusement parks, and other venues. Certain social and psycholog-
ical studies, such as facial analysis for behavioral economics, even
require the subject to be unaware of the capture process.

Limitations and Future Work. Our system still requires a sin-
gle scan of the actor as input. Ideally, we would like to estimate
the actor’s neutral shape together with other expressions. We plan
to investigate ways to automatically identify the expressions of the
actor without the need of a reference neutral expression shape. Our
system adds correctives but does not improve the meshes of the
initial blendshapes which encode expression semantics. Conse-
quently, we are still using the initial blendshape coefficients for
transfer. The subtle details that are captured in corrective space are
not transferred to the target character. If both source and target are
human-like characters, one could combine blendshape coefficient
transfer with per-vertex deformation transfer algorithms to retarget
fine-scale details, such as folds and wrinkles. Because our system
uses a vision-based 2D facial feature tracking algorithm, it works
best when the actor is facing front to the sensor. When turning
away, the 2D features may lose accuracy and introduce suboptimal
data to the incremental PCA algorithm. We plan to build a 3D vari-
ant of the real-time facial feature tracker that is directly coupled to
our 3D tracking model.

Acknowledgements

We thank the modelers: Gio Nakpil and Michael Koperwas for the
gargoyle (Hag); Hieu Phan for the baby; Hiroki Itokazu for the
monkey; and Lee Perry Smith for the generic tracking model. We
also thank Thomas Vetter for providing the morphable face model
database; Mike Jutan for the facial performance; Jonas Rabbe,
Karen Wong, and Eric Dillinger for the user interface; Yoojin Jiang
and Jens Fursund for the rendering; Florian Kainz for shooting
the live footages; Image Metrics for their support for Live Driver;
Cyrus Wilson, Etienne Vouga, and Chris Twigg for proofreading;
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