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Abstract

Real-time adaptation of a motion capture sequence to virtual envi-
ronments with physical perturbations requires robust control strate-
gies. This paper describes an optimal feedback controller for mo-
tion tracking that allows for on-the-fly re-planning of long-term
goals and adjustments in the final completion time. We first solve
an offline optimal trajectory problem for an abstract dynamic model
that captures the essential relation between contact forces and mo-
menta. A feedback control policy is then derived and used to simu-
late the abstract model online. Simulation results become dynamic
constraints for online reconstruction of full-body motion from a ref-
erence. We applied our controller to a wide range of motions in-
cluding walking, long stepping, and a squat exercise. Results show
that our controllers are robust to large perturbations and changes in
the environment.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
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tion capture, Optimal Control

1 Introduction

While motion capture data is ubiquitous in the entertainment and
video game industry as a source of realistic human motion, the pro-
cess of acquiring and integrating motion capture data into realistic
character motions in a virtual environment is still a time consuming
and difficult process. In particular, adapting motion capture data to
situations or physical interactions that differ from the conditions at
acquisition time remains quite challenging. Often, in order to get
usable motion data, the film or video game creator needs to recre-
ate the virtual environment on the capture stage itself, each time she
requires a motion in a different environmental setting. This reality
clearly falls short of the ideal. Instead, we would like to be able
to create a wide variety of realistic interactions from a single mo-
tion captured sequence in response to a physical simulation of the
virtual world.

Within the computer animation community the primary technique
for real-time adaptation of a motion sequence to physical interac-
tions is motion tracking via feedback control algorithms. Strict mo-
tion tracking, however, is often an undesirable behavior when the
performing character experiences a large perturbation, or is acting
in a new environment. People anticipate potential future interac-
tions, and may also re-plan their movements as the environmental
situation dictates. In addition, human movement is governed by
biomechanical and physical principles that strongly influence the
shape and trajectory of the actions taken. In contrast, the goal of
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Figure 1: A new technique to control character motion under phys-
ical perturbations and changes in the environment.

current feedback control algorithms for motion tracking is strictly
adherence to the reference motion itself. Consequently, they often
produce unnatural looking results when they need to recover from
strong deviations from the original motion.

In this paper, we describe a new approach to design feedback con-
trollers robust to perturbations in the virtual world. We seek to
design a controller that allows for online re-planning of long-term
goals and incorporates an accurate nonlinear dynamic system with
high-level balance strategy. Our formulation of motion tracking as
an optimal control problem provides two key advantages over previ-
ous tracking controllers. First, our controller respects the final goal
state and is flexible to adjust the completion time. Its ability to mod-
ify the final goal state and completion time produces strategies with
anticipatory and replanning behavior. Essentially, the controlled
character can “see” the change of the environment ahead of time
and adjust the control forces properly in advance (Figure 1). Sec-
ond, incorporation of a nonlinear dynamic system provides more
accurate estimates of the control outcome, and a high-level balance
strategy would ensure robust behaviors. As a result, our controller
can perform well with large feedback errors. The combination of
these improvements enables our control algorithm to generate re-
alistic and robust adaptations from a reference motion to widely
varying conditions.

While optimal control theory offers useful tools for solving feed-
back controllers for a variety of problems including those with fi-
nal constraints and flexible completion time, our particular problem
poses unique challenges. Our feedback controller requires the solu-
tion of a two-point boundary optimal trajectory problem, which is
known to be very difficult for large nonlinear dynamic systems. The
nonlinearity and complexity of human motion makes a full-body
formulation impractical. A practical alternative is to formulate a
linear quadratic regulator (LQR): a linearized dynamic system with
quadratic objective functions. However, this simplification cannot
handle higher-order objectives such as angular momentum regular-
ization, which is an important biomechanical principle shown to be
essential for balance. Moreover, the linear approximation of dy-
namics fails rapidly for large state errors. To deal with these issues,
we designed an abstract dynamic system that expresses fundamen-
tal aspects of human motion, especially the relation between contact
forces and angular momentum, and is still manageable by existing
trajectory optimization techniques such as differential dynamic pro-
gramming (DDP).

The abstract dynamic model takes global motion, including center
of mass position and linear and angular momentum, as state and



contact forces as control. A control policy of this model addresses
one of the most fundamental problem in human motion: the rela-
tion between the under-actuated degrees of freedom (DOFs) and
the contact forces. With no assumptions of the underlying kinemat-
ics structure, our abstract model is generic enough to represent any
motions that utilize contacts.

Our algorithm consists of an offline optimization that solves an op-
timal feedback control policy for the abstract model, and an online
optimization that synthesizes full-body motions with consistent dy-
namics to the abstract model while tracking a reference motion.
The offline optimization generates contact forces that reproduce the
reference motion with minimum angular momentum and force us-
age. When applied online, the feedback controller computes con-
tact forces to recover the motion into balanced states under pertur-
bations while meeting the final goal. The feedback controller also
anticipates changes in the environment and adjusts the motion tim-
ing when necessary. Online simulation of the feedback forces on
the abstract model produces momenta that serve as constraints to
reconstruct full-body motion from the reference.

Our method greatly enhances the capability of one single motion
capture sequence under different dynamically challenging condi-
tions. When we test our algorithm on a normal walk, a long step-
ping, and a squat exercise, results show that our controller per-
forms robustly for different types of motion and produces natural
responses to dynamical and environmental perturbations.

2 Related Work

Physically simulated character animation has been an important re-
search area in advancing the believability of human figures in many
online applications. Earlier work by Hodgins et al.[Hodgins et al.
1995; Wooten 1998] demonstrates that complex human movement
and maneuvers can be physically simulated in a virtual environ-
ment. While the results are compelling, the immense manual efforts
and expertise in designing robust controllers prevent the technique
from being widely adapted by real-world applications. In the next
decade, a number of researchers have proposed different techniques
to improve the control strategies [Laszlo et al. 1996; Yin et al.
2007; Shiratori et al. 2009], automate the design process [Faloutsos
et al. 2001], generalize to different characters [Hodgins and Pollard
1997], or optimize control parameters [Wang et al. 2009].

Much research effort has focused on simulating humanlike motion
by incorporating motion capture data. Zordan and Hodgins showed
that tracking upper body motion can be achieved by using sim-
ple proportional-derivative (PD) controllers [1999]. Their method
has since been enhanced by including a feedforward control term
[Yin et al. 2003], applying antagonistic controllers [Neff and Fi-
ume 2002], controlling the timing [Allen et al. 2007], or combining
with multiple tasks [Abe and Popović 2006]. Although effective,
these methods largely simplified the problem by avoiding the issue
of balance. When full-body balance is taken into account, dynamic
controllers must overcome difficult problems due to underactuation
and limited contact forces in addition to tracking the input motion.

A variety of techniques are proposed to control full-body balance,
such as correcting the input motion data for a planar character [Sok
et al. 2007], or integrating with a hand-crafted balance controller
for 3D motions [Zordan and Hodgins 2002]. Other methods incor-
porate balance control using optimization of contact forces. Short-
horizon optimization is used to regulate body center of mass [Abe
et al. 2007; Jain et al. 2009] and momenta [Macchietto et al. 2009]
at every instant to achieve static balance. Dynamic balance in lo-
comotion can be achieved by planning controls through the whole
motion trajectory [da Silva et al. 2008; Muico et al. 2009]. Opti-
mization of contacts and forces can also generate locomotion from

scratch [van de Panne 1997; Wampler and Popović 2009] or retar-
get a motion to a different dynamic model [Pollard and Behmaram-
Mosavat 2000]. We also plan the contact forces to achieve a long-
term goal. Unlike previous work, which precisely follows the tim-
ing and action of the reference motion with approximated dynam-
ics, our method allows for changes in final constraints and comple-
tion time with an accurate global dynamic model.

Simplified representations of human body are often useful in the
simulation or optimization of character motion [Popović and Witkin
1999]. These abstract models, however, are typically designed for
specific types of activities, such as a spring-mass model for running
and hopping [Blickhan 1989], or an inverted pendulum for stand-
ing [Yamane and Hodgins 2009] or walking [Alexander 1995; Kuo
et al. 2005; Stephens and Atkeson 2009]. Inspired by Shapiro and
Lee [2009], we propose an abstract dynamic model that captures
the essential relation between external forces and the momenta of
the center of mass. In addition, our abstract model is an accurate
description of the global motion with no assumptions of the un-
derlying kinematics structure. It is simple enough to apply to a
long-horizon optimization problem and generic enough to apply in
a wide range of motions that involves contacts.

Although physically simulated characters present realistic re-
sponses to external perturbations, nearly all interactive applications
today still use kinematically controlled characters. For real-time
applications like video games, having a precisely predictable and
controllable character is paramount. Researchers have suggested
hybrid systems that can switch between simulation and motion cap-
ture data based on the timing of perturbations [Zordan et al. 2005],
or divide kinematic control and dynamic control based on the coor-
dinated actuation in the input motion [Ye and Liu 2008]. Our work
also exploits the combined benefits of both approaches. We ensure
physical realism of the global motion, and kinematically control the
detailed joint configuration.

Many human motor skills require control of whole body linear and
angular momentum to achieve task-level goals while maintaining
balance. Several researchers in computer graphics have demon-
strated that aggregate body momentum can be a compact represen-
tation for editing ballistic motion [Liu and Popović 2002; Abe et al.
2004] or locomotion [Komura et al. 2004]. Regulating linear and
angular momenta have also been investigated for balance control. A
rich body of research in robotics demonstrated the positive effect of
minimizing angular momentum on walking and stepping [Popovic
et al. 2004; Kajita et al. 2003; Goswami and Kallem 2004; Herr and
Popovic 2008]. Macchietto et al. [2009] showed that simultane-
ously controlling the center of mass and the center of pressure via
changes of momenta resulted in much more robust and fluid mo-
tion for standing balance against perturbations. Our method con-
firms the importance of momentum control in human motion both
in terms of maintaining balance and producing natural movements.
Rather than tracking the momentum trajectory from the input mo-
tion, we apply a zero-angular momentum strategy from biomechan-
ics and robotics literature. As a result, our method produces robust
control for high dynamic motions without any assumptions about
the momentum patterns.

3 Overview

We describe a physics-based algorithm for producing realistic char-
acter motion against perturbations. The input to our algorithm is
a reference motion sequence and the output is a real-time motion
controller that tracks the input motion and also allows for both pas-
sive responses to perturbations and active re-planning of goals. Our
algorithm controls and simulates a simple abstract model that cap-
tures the most essential physical interactions with the environment:
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Figure 2: Overview.

the relation between external forces and the global motion. The
global motion then serves as a constraint to reconstruct the full-
body motion.

In the offline process described in section 4.1, we derive an optimal
feedback control from the solution of a long-term trajectory plan-
ning problem. The control policy aims to track the reference motion
while maintaining balance with minimum effort. It can also adjust
the completion time and the final goal in the long-term plan when
necessary. At each time step of online simulation, we simulate the
abstract model under the feedback control force F and external per-
turbation Fe. The full-body pose q, including global translation and
rotation degrees of freedom as well as joint configurations, is then
constructed from the reference motion Q̄ by matching the abstract
state x. Figure 2 illustrates the simulation process.

4 Optimal control for the abstract model

In the abstract model, the state variable x is defined as the global
motion of the character and the control variable is defined as the
contact forces F. The global translational motion can be described
by the position of the center of mass (COM), C, and linear mo-
mentum P and angular momentum L. We also want to represent
the global orientation, but it cannot be directly computed from
COM, so we approximate its effect with the integral of angular
momentum Φ: Φ(t) = Φ(t0)+

∫ t
t0

L, where Φ(t0) is simply set to
zero. The state variable of the abstract model is then defined as
x =

[

C P Φ L
]T

. The dynamic equation of the abstract model can
be expressed in Equation (1).

ẋ = Ax+B(x, t)F+G, (1)

where

A12×12 =







0 I3×3/M 0 0
0 0 0 0
0 0 0 I3×3

0 0 0 0






,

B(x, t)12×3p =







0 0 . . . 0
I3×3 I3×3 . . . I3×3

0 0 . . . 0
(c1(t)−C)× (c2(t)−C)× . . . (cp(t)−C)×






,

G12×1 =
[

0 Mg 0 0
]T

,

where g is gravity, M is the total mass of the system, and × de-
notes the skew-symmetric matrix form of a vector. The number
of contacts p and their positions c(t) are time-varying parameters
determined by the input motion. As a result, the width of B(x, t)
depends on the number of contact points p at the time t in the input
motion.

Our dynamic system is still nonlinear because of the product term
of state and control. Nonetheless, without any further approxima-
tion or linearization, this abstract model significantly improves the
convergence in control optimization described in Section 4.2. The
problem would be otherwise impossible to solve for a full-body dy-
namic system. In addition, the generic representation of the abstract
model enables a wide applicability of our feedback controller.

4.1 Control optimization

Our goal is to derive a controller that is robust for a wide range
of states around the reference trajectory and also reflects important
properties in natural human motion such as minimum effort and
regulating angular momentum to maintain balance. We formulate
an optimization problem with the desired objectives, so that we can
approximate a feedback control policy for the neighboring states
around the optimal solution.

Given a reference trajectory X̄ extracted from Q̄, we want to solve
an optimal trajectory that respects its initial and final states. Incor-
poration of a final state constraint provides several benefits. First,
it allows us to break down a long sequence into shorter segments
and concatenate them seamlessly. Second, it explicitly enforces the
motion to stay in balanced states. Third, it enables replanning of
the final goal on the fly. To improve the robustness and naturalness
of the control policy, we minimize angular momentum and control
forces in addition to tracking the reference motion. From the op-
timal solution of this optimization problem, we obtain an online
feedback controller for the neighboring states around the solution.

Equation (2) summarizes the optimization problem.

min
X,F

∫ t f

t0

(‖F(t)‖2
W1

+‖x(t)‖2
W2

+‖x(t)− x̄(t)‖2
W3

)dt

subject to ẋ(t) = Ax(t)+B(x(t), t)F(t)+G,

F(t) ∈ K,

Ψ(x(t f )) = x(t f )− x̄(t f ) = 0,

x(t0) = x̄(t0), (2)

where t f indicates the final time of the input motion. The contact
forces are unilateral and constrained by their friction limits approx-
imated by the friction cone K ([Abe et al. 2007]). W1,W2,and W3

are diagonal weighting matrices for force minimization, angular
momentum minimization, and tracking, respectively. Determin-
ing the weight is trivial for the abstract model. We will report the
weights in Section 6.

We apply Differential Dynamic Programming ([Jacobson and
Mayne 1970; Gershwin and Jacobson 1968]) to solve this fixed-
time continuous optimization. The final constraint is incorporated
by augmentation with a Lagrangian multiplier µ in the objective
function.

V = µT Ψ(x(t f ))+
∫ t f

t0

(‖F‖2
W1

+‖x‖2
W2

+‖x− x̄‖2
W3

)dt. (3)

We initialize the controls using inverse dynamics of the reference
trajectory, assuming this initial guess is close to a global solution.
We follow the procedure described in Chapter 2.5 in Jacobson and
Mayne [1970] to solve this optimization. The midpoint method is
used to numerically integrate the solution at each discrete time step.

Once we have the solution X∗, F∗, and µ∗ to Equation (2), we can
use control force F∗ to simulate X∗ and satisfy Ψ = 0. However,
in the case of perturbations, such as pushes or changes in the en-
vironment, we need to adjust the control forces such that they still
optimize V at the perturbed states. We use a first-order approxi-
mation to approximate the first derivatives of the perturbed states
around {X∗,F∗,µ∗}. Because first derivatives vanish at the solu-
tion, we get a linear feedback control policy. To produce a more
robust and flexible controller, we in addition allow the final time to
change, then our feedback control becomes a linear combination of
small changes in x, µ and t f :

δF = Kxδx+Kµ δ µ +Ktδ t f , (4)



where the time varying gains Kx,Kµ ,and Kt can be computed from
X∗ and F∗ (details in Appendix A).

4.2 Feedback control policy

If we can evaluate the deviation δx, δ µ , and δ t f , we can use the
control policy (Equation 4) to compute the deviation of control
force δF. The relation of δx, δ µ , and δ t f is expressed in two linear
equations derived from the linearization of the first-order optimality
condition Vµ = 0 and Vt f

= 0:

δVµ (X∗,µ∗, t∗f ) = Vµx(tc)δx+Vµµ (tc)δ µ +Vµt f
(tc)δ t f = 0 (5)

δVt f
(X∗,µ∗, t∗f ) = Vt f x(tc)δx+Vt f µ (tc)δ µ +Vt f t f

(tc)δ t f = 0 (6)

Change of final time In a fixed-time controller where δ t f = 0,
the reference time index tc is the same as the elapsed time index t.
We can simply compute the deviation in the current state as δx =
xt −x∗tc . However, in a free-final-time controller, tc changes with the
final time rather than incrementing along with t. At each time step,
we estimate the remaining time t f −tc based on δx and compare the
new final time with t f to get δ t f . This dependency between δx and
tc requires us to solve them simultaneously ([Speyer and Bryson
1968]).

We first derive the relation between δx and δ t f from Equation (5)
and Equation (6) as:

δ t f =Kdδx,

Kd =
Vt f x −Vt f µV−1

µµ Vµx

Vt f µV−1
µµ Vµt f

−Vt f t f

, (7)

where Kd is evaluated at tc. We then approximate δx at x∗tc as:

δx = (xt −x∗tc)− ẋ∗tc(t − tc)h, (8)

where h is the time step.

It is easy to see that δ t f = (t − tc)h, the change in final time is the
same as the change in the current reference index. Arranging terms
in Equation (7) and Equation (8), we get Equation (9):

(t − tc)h =
Kd(tc)

1+Kd(tc)ẋ∗tc
(xt −x∗tc). (9)

We can precompute Kd for all the time indices in the input motion
offline and enumerate the entire sequence online to find a tc that
best satisfies Equation (9). Given tc, We can compute δ t f and δx,
and compute δ µ from either Equation (5) or Equation (6).

Change of final constraint In addition, we derive the relation
Vµ = Ψ from Equation (3). If we take derivative on both sides:
δVµ = δΨ, we can change the final constraint value by substituting
the desired change δΨ in Equation (5). In our case, because Ψ has
no explicit dependence on time, δΨ is simply ∆Ψ. Equation (7)
and Equation (9) then become the following:

δ t f = Kdδx+Kc∆Ψ, (10)

(t − tc)h =
Kd(tc)

1+Kd(tc)ẋ∗tc
(xt −x∗tc)+

Kc(tc)

1+Kd(tc)ẋ∗tc
∆Ψ, (11)

where

Kc =
Vt f µV−1

µµ

Vt f µV−1
µµ Vµt f

−Vt f t f

.

We again precompute Kc offline and specify ∆Ψ on the fly. A
nonzero ∆Ψ changes the value of tc, thus affects both the state and
the final time. For example, when we change the desired final po-
sition of COM, the character will replan her motion as well as the
completion time.

4.3 Contact force correction

Because the contact position in the dynamics system is prescribed
for a fixed length, we cannot use the elapsed time to index B(x, t)
when the final time changes during simulation. The reference index
tc is not a good candidate neither because it will cause discontinuity
in contact when jumping back and forth in time. We need another
time index td that tracks the current time of the dynamic system.
Initially, td is the same as the elapsed time. When the final time
changes, we warp the remaining time according to the current tc,
and advance td with a different ratio than the elapsed time. After

every time step, we increment td by ∆ =
t f −htd
t f −htc

. If td and tc are the

same, ∆ = 1 and td advances at the same speed as elapsed time.
When tc jumps ahead or lags behind, ∆ adjusts accordingly to catch
up with tc.

When tc is different from td , the dynamic system used to com-
pute control forces can be different from the dynamic system used
for forward simulation. Direct application of the feedback control
forces in simulation might cause inconsistent contact situation. We
circumvent this issue by using a method similar to Muico et. al.
[2009], which matches the results of control (i.e. ẋ), rather than
the control force itself. A simple quadratic programming (Equa-
tion (12)) solves this problem:

min
F̂

‖ẋ(xt , F̂, td)− ẋ(xt , F̄, tc)‖
2

subject to F̂ ∈ K, (12)

where F̄ = F∗ + δF. Finally, we can use the solution F̂∗ as control
to simulate xt+1, and then we update t and td to the next time step.

5 Pose reconstruction

The goal of pose reconstruction is to produce a full-body pose sim-
ilar to the input motion sequence and consistent with the dynamics
of the abstract model. At each time step, we formulate an opti-
mization to solve for a new joint state that matches the linear and
angular momentum produced from the simulation of the abstract
model. We only solve for joint velocities and use explicit Euler to
update the joint configurations as qt = qt−1 +hq̇t−1. The optimiza-
tion is then simplified to a quadratic programming problem. The
objective function tracks the joint velocity and the foot velocity in
the warped reference motion. We need to specifically track the foot
motion so that it is consistent with the contact positions prescribed
in the abstract model. The optimization problem is defined as fol-
lows:

min
q̇t

w1‖q̇t −g1(Q̄, tc, td)‖2 +w2‖Jc(qt)q̇t −g2(Q̄, tc, td)‖2

subject to J(qt)q̇t = x̂t , (13)

where Jc is the Jacobian for foot contacts, J is the Jacobian of linear
and angular momentum, and x̂t denotes momenta from xt . g1 and
g2 compute the desired joint velocities and foot velocities respec-
tively by warping the reference motion. w1 and w2 are two scalar
weights that balance between these two objectives. We will discuss
the selection of them in Section 6.
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Figure 3: Our algorithm keeps track of the remaining reference
trajectory and linearly warps it in time according to tc. Initially, t
and td both starts from zero and advance at the same rate. Second
row: at frame 20, the character is pushed forward and tc jumps for-
ward to 25. The remaining trajectory in shortened from 40 frames
to 35. Third row: 10 frames later, t reaches 30 but td is at about
31.5 due to warping. The character now receives a backward push
that delays her for 10 frames from the reference. tc jumps back to
20 and the remaining trajectory again is warped to 40 frames. The
reference velocity is computed for the warped trajectory at td .

Trajectory warping Due to the change in final time, we need
to warp the remaining trajectory in time based on the estimated
remaining time (Figure 3). Function g1 takes the reference mo-
tion Q̄, warps it according to tc, then compute the warped veloc-
ity ˙̄q′ at td . It also tries to correct pose errors in the next time:

g1 = ˙̄q′
td

+ 1
h (qt − q̄td ). Here we exclude the global translation and

rotation degrees of freedom in g1 because the global motion is de-
termined by the abstract model. Likewise, g2 computes the desired
velocities for both the support foot and the swing foot.

Perturbation When the character receives additional external
forces Fe such as a push, the control policy does not respond imme-
diately until the abstract state changes at the next time step. How-
ever, the perturbed state may not respect the contacts. To help
maintain contacts and balance during perturbations, we allow ad-
justments in the contact forces to incorporate Fe. We solve for both
q̇t and F using Equation (14) when Fe is present and switch back to
Equation (13) when Fe is removed.

min
q̇t ,F

w1‖q̇t −g3(Q̄, tc, td ,Fe)‖2 +w2‖Jc(qt)q̇t −g2(Q̄, tc, td)‖2

+w3‖F− F̂‖2

subject to J(qt)q̇t = S(xt−1,F
e,F). (14)

This optimization modifies Equation (13) on three counts. First,
because the control force F is also a free variable, we express the
desired momenta x̂t in terms of the simulation function S which
integrates F and the push Fe from xt−1. Second, we add one ad-

ditional term to match F to the control forces F̂ computed from
the feedback controller. w3 weights how much to change the con-
trol compared to the tracking objectives. Third, we synthesize the
impact of the push on local body parts using function g3. It im-
poses the generalized impulse induced by Fe in each joint coordi-
nate: g3 = ˙̄q′

td
−hM−1(qt)J

T
e (qt)F

e, where M is the inertia matrix
and Je is the Jacobian of the contact point. This optimization has
nonlinear constraints due to the simulation function. We solve it
by formulating a sequential quadratic programming using SNOPT
[Gill et al. 1996].

6 Implementation details

In this section, we describe a few design choices and implementa-
tion details.

Control concatenation Although we can solve a motion of any
length, in practice, we break down a long sequence into shorter
segments, derive feedback controller for each segment, and con-
catenate them in simulation. A shorter sequence can be solved more
easily and efficiently in the offline optimization. In addition, to fully
take advantage of our ability to change final-state on the fly, the final
state of each short sequence coincides with a key event in the input
motion. For example, to generate down-stair walks, we segment a
normal walk at double support phase and optimize a controller for
each step. During online simulation, the final COM position is low-
ered for each controlled segment to guide the character walk down
stairs.

To create seamless transitions from controller A to controller B, we
translate the reference motion and contact positions of controller
B to the desired final goal of controller A. We also linearly warp
the swing foot trajectory to meet the new contact points. The same
procedure can also generate walks with longer or shorter steps.

Breaking down a long sequence may introduce artificial intermedi-
ate constraints and require larger forces to meet them in a short du-
ration. Fortunately, we can remedy these problems by overlapping
controllers in time and allow the control index tc to jump across
boundaries. For instance, when we overlap two consecutive con-
trollers A and B by 20 frames, we can start to use controller B
anytime during these 20 frames in online simulation. An early tran-
sition produces smoother motion by discarding the final constraint
of controller A and carrying the state errors to controller B, while
a later transition respects the final constraint of controller A better.
Likewise, when tc jumps beyond the range of the current controller
(i.e. Equation (9) cannot be satisfied), we continue to search the op-
timal tc in the neighboring controllers. For example, suppose con-
troller B is currently in use and the perturbation causes tc to jump to
an earlier frame beyond the first frame of controller B. In this case,
we use the best gain from controller A and let it take control until
tc jumps back to the range of controller B again. The overlapping
period and transition timing could be adjusted for different motions.

Objective weights Our algorithm requires tuning of only a hand-
ful of objective weights. For the offline optimization (Equation (2)),
we set the weight matrix W1 to identity matrix, and set W2 and W3

as follows:

W2 = wa







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I3×3






,W3 = wt







I3×3 0 0 0
0 I3×3 0 0
0 0 I3×3 0
0 0 0 0






.

In our examples, wa and wt are both set to 500 for normal walk
and long stepping, and they are 200 and 20 for squatting. In gen-
eral, larger value of wa produces a more robust control policy, at
the expense of possible larger tracking errors. Although our exper-
iments show that a wide range of weights produce similar results,
we plan to investigate inverse optimization techniques in the future
to automatically design objective functions that give rise to a given
reference trajectory.

The two online optimizations (Equation (13) and Equation (14))
have only three weights in total. We use w1 = 1,w2 = 5,and w3 =
0.01 in all the examples. With w1 and w2 fixed, w3 controls how
much to alter the optimal control force in order to satisfy the con-
tacts and tracking. Larger value of w3 makes the motion more com-
pliant to the push, but also more difficult to recover.

Numerical errors Our simulation of the abstract model is phys-
ically correct up to the second-order integration error. However,
matching both the COM position and momenta in the full-body



pose creates an infeasible optimization problem because we solve
for only the velocity and use explicit Euler to compute configura-
tion. In other words, when a full-body state has the same linear
momentum as the abstract state, it could still produce a different
COM position at the next time step. We prevent the accumulation
of this numerical error by feeding back the full-body COM position
to the abstract model so that the feedback control will try to correct
it at every time step.

Performance We test our algorithm on a 2.8GHz Intel Core 2
Duo processor. We use motions captured at 120 Hz as input and
use the same frequency for simulation. The offline optimization
usually converges within 10 iterations. The actual computation time
depends on the length of the motion. It takes about a minute for
60 frames of animation. For online simulation, we use a character
model with 42 degrees of freedom, and the simulation runs at 20
frames per second on average.

7 Results

We demonstrate the robustness of our algorithm by building con-
trollers for a variety of input motions. We test the feedback control
policies by applying arbitrary external forces to the character, and
by altering the physical properties of the environment, such as the
terrain geometry and surface friction.

Change of final time A change in completion time happens al-
most every time a perturbation is encountered. An obvious case is
when a character receives large pushes that disrupt her motion. For
example, in a normal walk, a large backward push slows down a
step by 10 frames while a small forward push accelerates the step
by 2-3 frames. When the character receives multiple pushes, she
is able to adjust her pace repeatedly on the go. In another example
when the character walks upstairs of 0.2m height, the final time is
lengthened by 4 frames, and it is shortened by 4 frames for walking
down. Similarly, it takes 4 frames longer for a 0.05m larger step,
and 17 frames faster for a shorter step. We observe similar results
of timing adjustments on other motions.

A flexible plan for completion time generates more natural and ro-
bust motion. We compare our controller to a fixed-time controller
on a walking motion. In the case of small pushes, our controller
always produces more stable motion with smaller contact forces.
For larger pushes, the character in our motion adjusts her walking
speeds to recover and is finally able to complete the step, while the
fixed-final-time motion failed to recover the walk (Figure 4).

(a) flexible final time (b) fixed final time

Figure 4: Our controller produces stable motion after a large back-
ward push.

Change of final constraint The ability to re-plan final constraint
on the fly makes it easy for our controller to adapt to new environ-
ment and generate a larger variety of motions from a single refer-
ence. In the first experiment, we derive an optimal feedback con-
troller for a normal walk on flat terrain and successfully apply it to
walking on stairs with different step height ranging from +0.3m to

−0.2m. For walking upstairs, we change the final goal at the be-
ginning of double support, and the character can raise her COM by
as much as 0.3m during the double support phase. Walking down
stairs is a more challenging task for our controller. The character
has to twist her torso to reach the new contact points and to com-
pensate for the angular momentum of the lower body. By simply
changing the final state at the start of each step, the same controller
can produce walking downstairs up to 0.2m per step.

We compare our results with a control policy that does not change
the final constraint ahead of time. We first add an linear offset to the
reference trajectory such that the final state of the trajectory meets
the desired height. The control forces in this case are driven by the
deviation between the current state and the modified reference tra-
jectory, rather than the anticipation of the change in the final state.
The character is able to walk down stairs with maximum step height
of 0.1m and up stairs with maximum step height of 0.2m, but the
motions are visually unnatural in that the COM is always lagging
behind the reference (Figure 5). Further, larger contact forces are
used compared to our results.

(a) flexible final constraint (b) fixed final constraint

Figure 5: Our controller produces more natural motion for walking
upstairs of 0.2m.

Generic motion Our algorithm is generic to different types of in-
put motion. Besides a straight walking sequence, we also apply the
algorithm to a long stepping and a squat exercise. For each case,
we apply random pushes to the character and observe dynamic re-
sponses and adjustments of final time. For example, when pushed
backward, the long stepping takes 4 frames longer to complete and
4 frames less for a forward push. We also repeatedly push the char-
acter while she is performing a squat exercise. The character is able
to balance by continuously adjust her whole body movements and
the final time.

Robustness We examine the robustness of our controller by sup-
plying pushes of different magnitudes, directions and durations.
Our controller performs more robustly to pushes that do not require
large change of steps. In all the examples, the character can recover
from impulsive pushes (lasting less than 0.3 second) up to 200N in
all directions. The controller is also robust against sustained pushes
lasting for one second with magnitude up to 40N.

We also compare our controller to one that tracks the reference mo-
tion without minimization of angular momentum. For reference
motions with small angular momentum, both controllers perform
similarly. For more dynamically challenging motions such as the
long stepping, our controller exhibits better stability to small pertur-
bations, and it can recover from extreme cases when the tracking-
only controller fails. In all the tests, our controller always uses less
control forces than the tracking-only controller.

8 Discussion

In conclusion, we have introduced a new technique to control and
synthesize real-time character motion under physical perturbations
and changes in the environment. We designed an optimal feedback



controller that allows for online re-planning of final goals and com-
pletion time. The abstract dynamic model enables incorporation of
accurate global dynamics and high-level strategies such as angu-
lar momentum regulation. Our results show that allowing comple-
tion time and final constraint to vary is critical for producing robust
and realistic motion. We also successfully applied our controller to
various motions including walking, long stepping, and a squatting
exercise.

Despite the advantages of the abstract dynamic model, the current
implementation suffers from a few limitations. The major drawback
is its dependency on prescribed contacts. Because the contact points
are not part of the dynamic states, we cannot model the change of
contacts using controls. Consequently, we can only model static
frictional contact but not sliding or rolling contacts. Moreover, our
controller is not able to produce different step taking behaviors from
the reference, nor can it handle motions with sporadic contacts such
as sparring. In the future, we want to incorporate long-term contact
planning ([Whitman and Atkeson 2009]) as a separate routine in
our algorithm. With the ability to plan contacts for future events,
we will be able to, for example, produce ballistic motions that pre-
pares for a safe landing when perturbed. A second drawback is the
lack of knowledge of the kinematic relation between contacts and
COM. As a result, the feedback control may generate kinematically
impossible COM motions. Incorporating inequality constraints on
the abstract states could help solve this problem.

Although our controller can handle large perturbations and changes
of the environment robustly, the feedback control policy is still only
an approximation of the optimality condition (Equation (6) and
Equation (5)). Consequently, our controller cannot initiate drasti-
cally different strategies such as a voluntary protective step. One
interesting future direction is to build a motion library for various
control policies and environment, then select the most appropriate
one online based on the actual situation. Liu and Atkeson [2009]
have successfully employed a similar technique to standing bal-
ance. We believe our method can extend their approach to dynamic
balance in locomotion.

In the future, we would like to test our algorithm on an even wider
range of motions such as climbing, swinging, and quadruped mo-
tions: any maneuvers utilizing contacts. We would also like to
apply our algorithm to hand-animated sequences to get plausible
global physics effect. Another application is to explore more so-
phisticated schemes for changing final goals under user command.
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A Feedback gains

We provide a compact description of our implementation on com-
puting feedback gains in Equation (4). Please refer to Jacobson and
Mayne [1970] for complete derivations of implicit final time prob-
lems (Chapter 2.3.5) and final constraint problems with inequality
constraints in control (Chapter 2.5).

We denote the dynamic function (Equation (1)) as f . In our prob-
lem, the Hamiltonian is defined as H = L+V T

x f , with the objective
L defined inside the integral in Equation (2). The feedback gains

are computed as follows:

Kx =−H−1
FF Z(HF + f T

F Vxx),

Kµ =−H−1
FF Z f T

F Vxµ ,

Kt =−H−1
FF Z f T

F Vxt f
,

where

Z = I−gT
F(gFH−1

FF gT
F)−1gFH−1

FF .

K = {F|g(F,ν)≥ 0} approximates a static friction cone using linear
combination of basis vector ν . In practice, we compute coefficients
λ for the linear cone and feedback forces can be expressed as: F∗+
λδF ∈ K.

Derivatives of V are computed by integration of the following ordi-
nary differential equations backward from t f at X∗ and F∗. These
expressions are simplified for our problem.

V̇x =−Hx,

V̇xµ =− ( fx + fFKx)TVxµ ,

V̇xt f
=− ( fx + fFKx)TVxt f

,

V̇µt f
=V T

xµ fFZT H−1
FF Z f T

F Vxt f
,

V̇xx =−Hxx − f T
x Vxx −Vxx fx,

+(HFx + f T
F Vxx)

T ZT H−1
FF Z(HFx + f T

F Vxx),

V̇µµ =V T
xµ fFZT H−1

FF Z f T
F Vxµ ,

V̇t f t f
=V T

xt f
fFZT H−1

FF Z f T
F Vxt f

.

Boundary conditions at t f are the following:

Vx = ΨT
x µ , Vxµ = ΨT

x , Vxt f
= Hx +Vxx f , Vµt f

= Ψx f ,

Vxx = 0, Vµµ = 0, Vt f t f
= HT

x f + f TVxx f .
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Contact-aware nonlinear control of dynamic characters. ACM
Trans. on Graphics (SIGGRAPH) 28, 3, 1–9.

NEFF, M., AND FIUME, E. 2002. Modeling tension and relaxation
for computer animation. In Eurographics/SIGGRAPH Sympo-
sium on Computer Animation, 81–88.

POLLARD, N. S., AND BEHMARAM-MOSAVAT, F. 2000. Force-
based motion editing for locomotion tasks. In Proceedings of the
IEEE International Conference on Robotics and Automation.
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