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Figure 1: A simulated character lands on the roof of a car, leaps forward, dive-rolls on the sidewalk, and gets back on its feet, all in one
continuous motion.

Abstract

We introduce a new method to generate agile and natural human
landing motions in real-time via physical simulation without using
any mocap or pre-scripted sequences. We develop a general con-
troller that allows the character to fall from a wide range of heights
and initial speeds, continuously roll on the ground, and get back
on its feet, without inducing large stress on joints at any moment.
The character’s motion is generated through a forward simulator
and a control algorithm that consists of an airborne phase and a
landing phase. During the airborne phase, the character optimizes
its moment of inertia to meet the ideal relation between the landing
velocity and the angle of attack, under the laws of conservation of
momentum. The landing phase can be divided into three stages:
impact, rolling, and getting-up. To reduce joint stress at landing,
the character leverages contact forces to control linear momentum
and angular momentum, resulting in a rolling motion which dis-
tributes impact over multiple body parts. We demonstrate that our
control algorithm can be applied to a variety of initial conditions
with different falling heights, orientations, and linear and angular
velocities. Simulated results show that our algorithm can effectively
create realistic action sequences comparable to real world footage
of experienced freerunners.
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1 Introduction

One of the great challenges in computer animation is to physically
simulate a virtual character performing highly dynamic motion with
agility and grace. A wide variety of athletic movements, such as
acrobatics or freerunning (parkour), involve frequent transitions be-
tween airborne and ground-contact phases. How to land properly to
break a fall is therefore a fundamental skill athletes must acquire. A
successful landing should minimize the risk of injury and disruption
of momentum because the quality of performance largely depends
on the athlete’s ability to safely absorb the shock at landing, while
maintaining readiness for the next action. To achieve a successful
landing, the athlete must plan coordinated movements in the air,
control contacting body parts at landing, and execute fluid follow-
through motion. The basic building blocks of these motor skills
can be widely used in other sports that involve controlled falling
and rolling, such as diving, gymnastics, judo, or wrestling.

We introduce a new method to generate agile and natural human
falling and landing motions in real-time via physical simulation
without using motion capture data or pre-scripted animation (Fig-
ure 1). We develop a general controller that allows the character to
fall from a wide range of heights and initial speeds, continuously
roll on the ground, and get back on its feet, without inducing large
stress on joints at any moment. Previous controllers for acrobat-like
motions either precisely define the sequence of actions and contact
states in a state-machine structure, or directly track a specific mo-
tion capture sequence. Both cases fall short of creating a generic
controller capable of handling a wide variety of initial conditions,
overcoming drastic perturbations in runtime, and exploiting unpre-
dictable contacts.

Our method is inspired by three landing principles informally de-
veloped in freerunning community. First, reaching the ground with
flexible arms or legs provides cushion time to dissipate energy over
a longer time window rather than absorbing it instantly at impact.
It also protects the important and fragile body parts, such as the
head, the pelvis, and the tailbone. Second, it is advisable to dis-
tribute the landing impact over multiple body parts to reduce stress
on any particular joint. Third, it is crucial to utilize the friction force
generated by landing impact to steer the forward direction and con-
trol the angular momentum for rolling, a technique referred to as
”blocking” in the freerunning community. These three principles
outline the most commonly employed landing strategy in practice:
landing with feet or hands as the first point of contact, gradually
lowering the center of mass (COM) to absorb vertical impact, and
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turning a fall into a roll on the ground, with the head tightly tucked
at impact moment.

However, translating these principles to control algorithms in a
physical simulation is very challenging. During airborne, the con-
troller needs to plan and achieve the desired first point of contact
and the angle of attack, in the absence of control over the charac-
ters global motion in the air. Instead of solving a large, nonconvex
two-point boundary value problem, we develop a compact abstract
model which can be simulated efficiently for real-time applications.
To strike the balance between accuracy and efficiency, our algo-
rithm replans the motion frequently to compensate the approxima-
tion due to the simplicity of the model. When the character reaches
the ground, the controller needs to take a series of coordinated ac-
tions involving active changes of contact points over a large area
of human body. Our algorithm executes three consecutive stages,
impact, rolling, and getting-up by controlling poses, momentum,
and contacts at key moments. Furthermore, the airborne and land-
ing phases are interrelated and cannot be considered in isolation:
the condition for a successful landing defines the control goals for
the airborne phase while the actions taken during airborne directly
impact the landing motion. We approach this problem in a reverse
order of the action sequence: designing a robust landing controller,
deriving a successful landing condition from this controller, and de-
veloping an airborne controller to achieve the landing condition.

We demonstrate that our control algorithm is general, efficient, and
robust. We apply our algorithm to a variety of initial conditions
with different falling heights, orientations, and linear and angular
velocities. Because the motion is simulated in real-time, users can
apply perturbation forces to alter the course of the character in the
air. Our algorithm is able to efficiently update the plan for landing
given the new situations. We also demonstrate different strategies
to absorb impact, such as a dive roll, a forward roll, or tumbling.
The same control algorithm can be applied to characters with very
different body structures and mass distributions. We show that a
character with unusual body shape can land and roll successfully.
Finally, our experiments empirically showed that the algorithm in-
duces smaller joint stress, except for the contacting end-effectors.
In the worst case of our experiments, the average joint stress is still
four times lower than landing as a passive ragdoll.

2 Related Work

Physical simulation of biped motion has many applications in com-
puter animation and robotics. The most extensively studied move-
ment is perhaps animal locomotion, which has many manifesta-
tions, including walking [Yin et al. 2007; da Silva et al. 2008;
Muico et al. 2009; Lasa et al. 2010; Mordatch et al. 2010; Wu
and Popović 2010; Coros et al. 2010; Coros et al. 2011], running
[Yin et al. 2007; Mordatch et al. 2010; Wu and Popović 2010],
jumping [da Silva et al. 2008; Lasa et al. 2010], swimming [Tan
et al. 2011], crawling [Miller 1989], and flying [Wu and Popović
2003]. Although falling and landing motions are fundamentally dif-
ferent from continuous locomotion, our controller during the land-
ing phase also needs to overcome the issue of balance and exploit
contact forces to achieve control goals. In particular, our algorithm
leverages the virtual force control which has been successfully ap-
plied to bipeds [Coros et al. 2010] and quadrupeds [Coros et al.
2011] locomotion.

In addition to locomotion, previous work has demonstrated that
highly dynamic motions with a long ballistic phase can be synthe-
sized using physics simulation or kinematic approaches. Hodgins
et al. [1995; 1998] showed that carefully crafted control algorithms
can simulate highly athletic motions, including diving, tumbling,
vaulting, and leaping. Faloutsos et al. [2001] composed primi-

tive controllers to simulate more complex motor skills, such as a
kip-up move or a dive down stairs. Liu et al. [2010] successfully
tracked contact-rich mocap sequences using a sampling-based ap-
proach. They showed that vigorous motions with complex contacts,
such as a dive-roll or a kip-up move, can be dynamically simu-
lated, provided full body mocap sequences as desired trajectories.
Zhao and van de Panne [2005] provided a palette of parametrized
actions to build a user interface for controlling highly dynamic an-
imation. Other techniques directly edit ballistic motion sequences
under the constraints imposed by conservation of momentum [Ma-
jkowska and Faloutsos 2007; Sok et al. 2010], or apply a hybrid
method for synthesizing dynamic response to perturbation in the
environment [Shapiro et al. 2003]. If the contact positions and tim-
ing are known, spacetime optimization techniques can also generate
compelling dynamic motions [Liu and Popović 2002; Fang and Pol-
lard 2003; Safonova et al. 2004; Sulejmanpašić and Popović 2004].
In this work, we take the approach of physical simulation, but we
seek for a more general and robust control algorithm such that the
controller can operate under a wide range of initial conditions and
allow for runtime perturbations. Furthermore, our controller does
not depend on any pre-scripted or captured motion trajectories.

Safe falling and landing for bipeds is a topic that receives broad at-
tention in many disciplines. Robotic researchers are interested in
safe falling from standing height for the purpose of reducing dam-
ages on robots due to accidental falls. Previous work has applied
machine learning techniques to predict falling [Kalyanakrishnan
and Goswami 2011], as well as using an abstract model to con-
trol a safe fall [Fujiwara et al. 2002; Fujiwara et al. 2007; Yun et al.
2009]. In contrast to the related work in robotics, our work focuses
on falls from higher places. In those cases, control strategies during
long airborne phase become critical for safe landing. We draw in-
spiration from kinesiology literature and sport practitioners. In par-
ticular, the techniques developed in freerunning and parkour com-
munity are of paramount importance for designing landing control
algorithms capable of handling arbitrary scenarios [Edwardes 2009;
HLJ 2011].

Many animals have astonishing capabilities to achieve different ma-
neuvers in the air by manipulating their body articulations. Cats are
known for landing with feet from any initial falling condition [Kane
and Scher 1969; Montgomery 1993]. Lizards swing their tails to
stabilize their bodies during a leap [Libby et al. 2012]. Pigeons re-
orient their bodies to achieve a sharp turn when flying at low speed
[Ros et al. 2011]. These behaviors inspire scientists and engineers
to develop intelligent devices and control algorithms. Our work has
a similar goal that we study how human body can change shape in
the air to reduce damage at landing.

3 Overview

We introduce a physics-based technique to simulate strategic falling
and landing motions from a wide range of initial conditions. Our
control algorithm reduces joint stress due to landing impact and
allows the character to efficiently recover from the fall. The charac-
ter’s motion is generated through a forward simulator and a control
algorithm that consists of an airborne phase and a landing phase.
These two phases are related by an appropriate landing strategy,
which describes the body parts used for the first contact with the
ground, a desired landing pose, and an ideal landing condition that
describes the relation between landing velocities and the angle of at-
tack in successful landing motions. We develop two most common
types of landing strategies: hands-first and feet-first, and introduce
a sampling method to derive the ideal landing condition for each
strategy.

At the beginning of a fall, the character first decides on a landing
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Figure 2: Three stages in the landing phase.

strategy. During the airborne phase, the character optimizes its mo-
ment of inertia to achieve the ideal landing condition. The landing
phase is divided into three stages: impact, rolling, and getting-up
(Figure 2). The impact stage begins when the character reaches
the ground. During the impact stage, the character leverages the
friction forces from the ground to control linear and angular mo-
mentum. After the COM moves beyond the hand contact area, the
character switches to the rolling stage in which continuous change
of contact carries out. In preparation for standing up, the charac-
ter needs to maintain the rolling direction and plant its feet on the
ground. When the COM passes through the first foot, the character
starts to elevate the COM in order to compete the landing process
in an upright position.

4 Landing Strategy

Given an initial condition at the beginning of a fall, the charac-
ter can choose to land with the hands-first strategy or the feet-first
strategy. In general, the hands-first strategy is chosen only for aes-
thetics purpose because it is less robust and suitable only for falls
with planar angular momentum (about the pitch axis). In contrast,
the feet-first strategy can handle a wide range of arbitrary initial
conditions because it includes an extensive foot-ground contact du-
ration to modulate the momentum before rolling. A landing strategy
also includes a desired landing pose. Our algorithm only requires
a partial pose to stretch the arms or legs at landing, depending on
whether the hands-first or the feet-first strategy is chosen. We man-
ually specify this partial pose for each strategy (Figure 3).

Figure 3: The left and middle are the desired landing poses for
the hands-first strategy and the feet-first strategy, respectively. The
right is the ready-to-roll pose for the feet-first strategy, which we
track only the upper body.
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An integral part of our landing strategy
is the landing condition, a simple equa-
tion that compactly characterizes suc-
cessful landing motions. If the charac-
ter manages to turn a fall into a roll and
gets back on its feet at the end of the
roll, we consider it successful. Because
a successful landing highly depends on
whether the character is able to control
the momentum at the moment of the

first contact (T ), our algorithm defines the landing condition as a
relation between the global linear velocity v

(T ), global angular ve-

locity w(T ), and the angle of attack q (T ), which approximates the
global orientation of the character. The actual coefficients of the
landing condition depend on the design of the landing controller,
which cannot be derived analytically, but can be learned from ex-
amples generated by the landing controller. We apply a sampling
method, similar in spirit to the approach Coros et al. [Coros et al.
2009] presented for biped locomotion, to determine the landing
condition for a particular landing strategy.
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Figure 4: Samples for hands-first landing strategy. Successful sam-
ples are bounded between top and bottom planes along q (T ) axis.
The middle plane, average of the two, indicates the linear relation
of the ideal landing condition.

For the hands-first strategy with planar motion, we consider a four-
dimensional space spanned by q (T ), v(T )y , v(T )z and w(T )

x . Given a
sample in the parameter space, we run our landing controller to test
whether the character can successfully get up at the end. Empirical
results from thousands of random samples show that the successful
region is mostly continuous and linear (Figure 4). We can bound the
successful samples in the q (T ) axis using two hyperplanes. Taking
the average of the maximum and the minimum planes, we derive a
linear relation between the angle of attack and the landing velocities
as

q (T ) = a v(T )y +b v(T )z + c w(T )
x +d (1)

where a, b, c, and d are the coefficients of the fitted hyperplane.
Note that Equation (1) is a sufficient but not necessary condition for
successful landing. Most points between the maximal and minimal
hyperplanes also lead to successful landing motions. This means
that even when the character cannot meet the landing condition ex-
actly, it still has a good chance to land successfully. For the feet-
first strategy, in theory, we need to consider all six dimensions of
linear velocity and angular velocity. However, our empirical results
show that non-planar velocities do not affect q (T ) as long as they
stay within a reasonable bound (Figure 5). As a result, the feet-first
strategy is able to handle non-planner falling motion using the same
parameters (but different coefficients) in Equation (1).
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Figure 5: Samples in the space of v(T )z , w(T )
y , and q (T ). The spin-

ning velocity w(T )
y has minimal effect on the success of a sample.

5 Airborne Phase

Once the character decides on a landing strategy, the goal of the air-
borne phase is to achieve the corresponding landing pose and land-
ing condition. Because momentum is conserved in air, the linear ve-
locity, the total airborne time T , as well as the angular momentum
are already determined by the initial condition of the fall. How-
ever, the character can still control the angular velocity w(T )

x and
the angle of attack q (T ) by varying its pose (i.e. actuated degrees
of freedom (DOFs) excluding the global position and orientation)
to change the moment of inertia. To most effectively achieve the
desired landing condition, we design our airborne algorithm based
on the strategy employed in platform diving competition, where a
highly trained athlete performs a sequence of predefined poses to
manipulate the final orientation and angular velocity.

To this end, our airborne controller uses a PD servo to track a se-
quence of poses that lead to the ideal landing condition. The se-
quence of poses is replanned frequently to correct the errors caused
by perturbation and numerical approximation. Each time the algo-
rithm makes a new plan, an optimal sequence of poses from the
current moment to the landing moment is computed. This sequence
starts with the current pose q0 and ends at the desired landing pose
qT (determined by the landing strategy), with a duration of T sec-
onds. Our control algorithm searches for an intermediate pose q

⇤

and a duration Dt⇤, such that the character can reach the ideal land-
ing condition by changing to q

⇤ immediately and holding the pose
q

⇤ for Dt⇤ seconds before changing to the final pose qT .

We formulate an optimization to solve for an intermediate pose q

and its holding duration Dt that can best achieve the ideal landing
condition. The cost function g(q,Dt) is defined in Equation 2.

g(q,Dt) = q (T )(q,Dt)�a v(T )y �b v(T )z � c w(T )
x (q (T ))�d (2)

Note that w(T )
x is a function of q (T ) because we need global orienta-

tion of the character at time T to compute the global angular veloc-
ity. If we can compute q (T ), Equation (2) can be readily evaluated.
Unfortunately, for a complex 3D multibody system, an analytical
solution for q (T ) is not available. We could resort to numerical
simulation of the entire airborne phase, in which the character goes
through q0, q

⇤, and qT subsequently. However, involving forward
simulation of a full skeleton in the cost function is too costly for our
real-time application. Instead, we simulate a simple proxy model
with only six DOFs. When the character is holding a pose, the
proxy model behaves like a rigid body with a fixed inertia. When

the character transitions from one pose to another, we assume the
inertia of the proxy model changes linearly within a fixed duration
DtC (DtC = 0.1s in our implementation). By simulating the proxy
model for the duration of T , we obtain the angle of attack q (T ) and
angular velocity w(T ) as follows.

R(q (T )) = R(q (0))+
Z Dtc

t=0
[I�1

A (t)L]R(q (t))dt

+
Z Dtc+Dt

t=Dtc
[I�1(q,q (t))L]R(q (t))dt

+
Z 2Dtc+Dt

t=Dtc+Dt
[I�1

B (t)L]R(q (t))dt

+
Z T

t=2Dtc+Dt
[I�1(qT ,q (t))L]R(q (t))dt; (3)

w(T ) = I

�1(qT ,q (T ))L (4)

where R is the rotation matrix, I(q) is an inertia matrix evaluated
at pose q, and L is the angular momentum. IA(t) is an interpo-
lated inertia matrix between I(q0) and I(q), and similarly, IB(t) is
an interpolated matrix between I(q) and I(qT ). The operator [ ]
represents the skew symmetric matrix form of a vector.

To formulate an efficient optimization for real-time application, we
represent the domain of intermediate pose as a finite set of can-
didate poses, instead of a continuous high-dimensional Euclidean
space. This simplification is justified because a handful of poses is
sufficient to effectively change the moment of inertia of the char-
acter. As a preprocess step, our algorithm automatically selects the
candidate set Q from a motion capture sequence in which the sub-
ject performs range-of-motion exercise. The selection procedure
begins with a seed pose q̄0 and increments the set by adding a new
pose q̄new which maximizes the diversity of inertia (Equation 5).
In our experiment, 16 poses are sufficient to present a variety of
moment of inertia (Figure 6).

q̄new = argmax
q2M

(min
q̄ j2Q

kI(q)� I(q̄ j)k)} (5)

where M contains the poses in the range-of-motion sequence, Q
contains the currently selected candidate poses, and I(q) computes
the inertia of pose q.

To find optimal q

⇤ and Dt⇤ for each plan, we start from the current
pose as q0 and loop over each candidate pose in Q. For each can-
didate pose q̄i, we search for the best Dt such that g(q̄i,Dt) is min-
imized. The search can be done efficiently using one-dimensional
Fibonacci algorithm and the proxy-model simulation. The optimal
intermediate pose q

⇤ and its optimal duration Dt⇤ are used for air-
borne control.

By design, our algorithm trades off accuracy for efficiency; we use
a fast but less accurate proxy-model simulation and a small set of
predefined poses. Our algorithm is very efficient so that the char-
acter can frequently reassess the situation and replan new poses to
correct any errors or adapt to unexpected perturbations.

The frequency of replanning can be determined differently for q

⇤

and Dt⇤. In our implementation, we replan q

⇤ at a much lower
frequency than Dt⇤ to avoid unnatural frequent change of poses.
In addition, we stop replanning when the character is within 0.3
seconds away from the ground.

6 Landing Phase

During landing, the character braces for impact, executes rolling
action, and gets up on its feet. Although these three stages take
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Figure 6: Among 16 poses in Q, pose 1, 2, 9, and 13 are frequently
selected by the airborne controller

very different actions, they share common control goals: modulat-
ing the COM and posing important joints. We apply the same con-
trol mechanism via virtual forces and PID joint-tracking to produce
the final control forces for the forward simulator (Figure 7).

PID

Figure 7: Landing phase controller.

Virtual forces are effective in controlling the motion of the COM.
To achieve a desired acceleration of the COM, c̈, we compute the
virtual force as fv = mc̈ where m is the mass of the character. The
equivalent joint torque as if applying fv to a point p on the body
is tv = J

T (p)fv, where J(p) is the Jacobian computed at the body
point p. If p is on a body node in contact with the ground, we
apply the opposite force (fv = �mc̈) in order to generate a ground
reaction force that pushes the COM in the desired direction. To
prevent the character from using excessively large joint torques,
we limit the magnitude of the sum of virtual forces. A successful
landing motion also requires posing a few important joints at each
of the three stages. We track these partial poses with PID servos:
tp = kp(q̄� q)+ ki

R
(q̄t � qt)dt � kvq̇, where kp, ki and kv are the

proportional, integral, and derivative gains respectively, and q̄ is the
desired joint angle. The final control torque is tv +tp. We limit the
magnitude of the virtual force to 3000N to prevent excessive usage
of joint torques.

6.1 Impact Stage

Impact stage is the most critical stage during landing, which re-
quires careful control and execution. Human athletes tend to act
like a spring to absorb the effect of impact by flexing their joints
between the points of first contact and the COM. Meanwhile, they
also utilize friction force from the ground contact to adjust forward
linear momentum and angular momentum. Applying these princi-
ples, our algorithm utilizes virtual force technique to achieve con-
tact forces for desired momentum. In addition, we use joint track-
ing to provide sufficient stiffness at contacting limbs and smooth
transition to the next stage. If the character chooses the hands-first
strategy, the final pose at the end of compression can seamlessly
connect to the rolling stage. With the feet-first strategy, an addi-
tional “thrusting” step is required to transition to the rolling stage.
We define a “ready-to-roll” pose that guides the character toward
a rolling motion (Figure 3, Right). During this additional step, the
character tracks the ready-to-roll pose while using its feet to thrust
forward after its COM compressed to the lowest point (Figure 8).

Compression Thrusting

Figure 8: Two-step impact stage for the feet-first strategy.

Virtual force. The most important goal during the impact stage
is to stop the downward momentum before the character tragically
crashes into the ground. We do so by applying virtual forces to
control the vertical position and velocity of the COM. In addition,
our algorithm favors virtual forces that result in temporally smooth
ground reaction forces to distribute the impact evenly over time.
With these control goals, our algorithm aims to use constant accel-
eration of the COM to achieve the desired COM position c̄y and
velocity ¯̇cy from the current state (cy and ċy).

c̈y =
1
2
( ¯̇c2

y � ċ2
y)/(c̄y � cy) (6)

A virtual force of �mc̈y in the vertical direction is then evenly dis-
tributed to the end-effectors that are in contact with the ground.

Virtual forces in the horizontal direction are important to achieve
the desired forward linear momentum and angular momentum at
the end of compression, or to achieve the desired forward thrust
for the feet-first strategy. We use a simple feedback mechanism to
compute the desired horizontal acceleration of the COM.

c̈x/z = kv( ¯̇cx/z � ċx/z) (7)

where ¯̇cx/z is the desired COM velocity in forward and lateral direc-
tions and kv is the damping coefficient. The corresponding virtual
force is distributed to the contacting end-effectors inversely propor-
tional to their distances to the COM.

Joint tracking. In addition to virtual forces, we use PID servos to
maintain joint angles of the torso and limbs that are not in contact,
while limbs in contact with the ground act like viscous dampers
(PID control with a zero spring coefficient). We also use PID con-
trol to keep the chin tucked to reduce the chance of the head im-
pacting the ground. Please see Table 1 for all the parameters in our
implementation. We set the constant integral gain ki of contacting
limbs as 50, and 0 for all other joints.



Table 1: Control parameters.

Hip Lower spine Upper spine Neck Knee
kp 90.0 300.0 180.0 10.0 60.0
kd 20.0 60.0 40.0 2.0 13.0

Ankle Clavicle Shoulder Elbow Wrist
kp 15.0 180.0 120.0 60.0 9.0
kd 6.0 40.0 27.0 13.5 4.0
c̄y ¯̇cy ¯̇cx/z kv kp (Eq 8) wMAX

0.4m 0.0m/s 4.0m/s 500 800 3.3 Rad/s

6.2 Rolling Stage

Once the character’s COM passes the hand-ground contact area
with sufficient forward linear and angular momentum, rolling be-
comes a relatively easy task. As long as the character is holding
a pose with a flexed torso, a reasonable rolling motion will readily
carry out. If the character wishes to land back on its feet and get up
after rolling, it must also maintain forward momentum and lateral
balance during the roll.

Virtual force. To this end, we apply a virtual force to guide the hor-
izontal position of the COM toward the feet area, while restricting
it above the support polygon formed by contact points. The virtual
force is applied on the character’s hands so that it can use the entire
upper body to maintain momentum and balance. The virtual force
produces the desired acceleration of the COM computed using a
feedback mechanism:

c̈x/z = kp(c̄x/z � cx/z) (8)

where the desired position c̄ is set to be the location of the left foot.

Joint tracking. During rolling, the character tracks a simple pose to
tuck the head, flex the torso, and position the legs appropriately. We
treat legs asymmetrically to both facilitate momentum control and
improve the aesthetics of the motion. When the character rolls on its
back, it brings the left knee closer to the chest and casually stretches
the right leg. This arrangement helps the character to regulate the
angular velocity using the right leg while getting ready to stand
up on its left foot. Based on the forward angular velocity at the
beginning of the rolling stage, we adjust the desired tracking angles
for the right knee as:

qR = max((1�wx/wMAX )p,0) (9)

6.3 Getting-Up Stage

The last stage of landing phase is to stand up using the remaining
forward momentum. When the COM passes the foot contact, the
character will start to elevate its COM to a desired height.

Virtual force. Similar to previous stages, we again apply virtual
forces on the feet and the hands to control the vertical and the hori-
zontal positions of the COM respectively. We compute c̈y using the
same formula from Section 6.1 with different desired height of the
COM. For c̈x/z, we use the same formula as in Section 6.2.

Joint tracking. During the getting-up stage, our algorithm simply
tracks the torso and the head to straighten the spine and untuck the
chin.

7 Results

To evaluate the generality of our algorithm, we simulated landing
motions with a wide range of initial conditions (Table 2), various

Figure 9: Hands-first landing motion.

landing styles (hands-first, feet-first, consecutive rolls), and dif-
ferent skeleton models. We also demonstrated that our algorithm
is robust to unpredicted runtime perturbations and different physi-
cal properties of the landing surface. Please see the accompanying
video to evaluate the quality of our results.

Feet-first landing strategy. The most recommended landing
strategy from freerunning community is the feet-first landing. Our
results verify that the feet-first landing strategy is indeed very ro-
bust for falls with arbitrary linear and angular momentum. There
are two key advantages of using feet as the first point of contact.
First, average human has longer and stronger legs than arms. Us-
ing legs to land provides more time and strength to compress and
absorb vertical impact. Second, the feet-first strategy has an ad-
ditional thrusting step after compression and before rolling stage.
During the thrusting step, the character can utilize the contact forces
to drastically change the linear and angular velocity in preparation
for rolling. Our results show that a successful forward roll can be
carried out even when the character is falling with backward and
lateral linear velocity or nonplanar angular velocity.

For the feet-first strategy, the coefficients of the landing condition in
Equation (1) are: a =�0.01,b =�0.06,c =�0.03, and d = 0.45.
When the character transitions to the rolling stage, we specified an
asymmetric ready-to-roll pose to increase the visual appeal of the
motion.

Hands-first landing strategy. Using hands as the first point of
contact can generate visually pleasing stunts (Figure 9). For falls



Table 2: Initial conditions of the examples shown in the video (in
order of appearance)

Hands-first landing strategy
~Cy (m) vx (m/s) vy(m/s) vz (m/s) wx (Rad/s) wy (Rad/s) wz (Rad/s)

10.6 0.0 0.0 4.0 8.7 0.0 0.0
5.8 0.0 0.0 2.3 5.0 0.0 0.0
10.6 0.0 0.0 6.0 2.5 0.0 0.0
2.5 0.0 0.4 8.0 5.0 0.0 0.0

Feet-first landing strategy
~Cy (m) vx (m/s) vy(m/s) vz (m/s) wx (Rad/s) wy (Rad/s) wz (Rad/s)

6.0 0.0 0.0 5.0 4.0 -1.0 -5.8
2.7 0.0 -1.0 0.0 0.0 0.0 0.0
5.5 1.0 0.0 0.0 0.0 5.0 0.0
9.6 -2.0 0.0 -3.5 0.9 2.1 -3.9

with dominant planar velocity (vz and wx), the hands-first strategy
performs as well as the feet-first strategy. However, when the initial
condition has large lateral linear momentum or angular momentum
in yaw and roll axes, the hands-first strategy becomes less robust.
Unlike the feet-first strategy, which has an additional thrusting step,
the hands-first strategy is unable to change forward direction drasti-
cally after landing. This imposes stringent conditions on the contact
forces because, in order to roll successfully, the contact forces must
counteract non-planner momentum, while stopping downward mo-
mentum and maintaining forward momentum. Such forces usually
violate the unilateral constraint of ground reaction force.

For the hands-first strategy, the coefficients of the landing condition
are: a =�0.01,b =�0.06,c =�0.03, and d = 3.08. Note that the
coefficients are identical to those of the feet-first strategy except for
the constant term, indicating that the gradient of the angle of attack
with respect to the landing velocity is the same between feet-first
and hands-first landing strategies.

Consecutive rolls. Once the character starts rolling, it is rather
effortless to continue on. By looping the end of the rolling stage
back to the beginning, we showed that the character was able to
make two consecutive rolls to break a fall with large forward speed.
Falling on multiple surfaces is also easy to simulate using our con-
troller. One example demonstrated a continuous sequence of the
character landing on the roof of a car, leaping forward, landing
again on the sidewalk, and finishing with a dive roll (Figure 1).
With our controller, a variety of impressive action sequences can be
generated easily without any recorded or pre-scripted motions.

height:  164  cm

weight:  59  kg

DOFs:  49
X

Y

Z

Figure 10: Left: The character model used for most examples.
Right: A character with a disproportionately large torso and short
legs.

Different skeleton models. The character model we used to
generate most examples has a height of 164cm, a weight of 59 kg,
and 49 DOFs. The controllers designed for this character can be

applied to a drastically different character whose torso is twice as
long and twice as wide, comparing to the default character. It also
has very short legs and a small head (Figure 10). We tested both
hands-first and feet-first landing strategies on this new character.
The results are similar in quality to the default character, although
the new character hits its head on the ground because it is difficult
to tuck the head with such a short neck. All the control parameters
remain the same for the second character, except for c̄y increasing
by 5cm and the desired landing angle increasing by 0.25rad.

Runtime perturbations. One great advantage of physical simu-
lation is that the outcome can be altered on the fly based on user
interactions. We demonstrated the interactivity of our simulation in
two different ways. First, the user can directly “drag” the character
to a different location or orientation when the character is in the air.
This example shows off robustness and efficiency of our airborne
controller. As the character being relocated, it starts to recalculate
and finds a new plan to execute in real-time. Second, we let the
user shoot cannons at the character as a source of external forces.
When a cannon hits the character, it exerts force and torque on the
character, causing a passive response followed by active replanning
and execution.

Different landing surfaces. We tested our controller on surfaces
with different elasticities and friction coefficients. When the char-
acter lands on an elastic surface, such as a gymnastic floor or a
trampoline, the character tumbles in the air instead of rolling on
the ground. We generated a continuous sequence where the char-
acter stopped the fall on an elastic surface by tumbling three times
and finishing with a forward roll. This example shows that various
interesting acrobatic sequences can be generated by simply con-
catenating our falling and rolling controllers repeatedly. In another
example, we reduced the friction coefficient to simulate an icy sur-
face. The character was able to use the same control algorithm to
roll, but failed to stand up at the end.

7.1 Evaluation

Performance. All the results shown in the video were produced
on a single core of 3.20GHz CPU. Our program runs at 550 frames
per second. The bottleneck of the computation is the optimization
routine in the airborne controller. We use Open Dynamic Engine to
simulate the character. The time step is set at 0.2 millisecond, and
runs the airborne optimization in 50 Hz.
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Figure 11: Maximal stress for each joint from a hands-first landing
motion. Results are quantitatively similar across all of our simula-
tions. Green: Ragdoll motion. Blue: Our motion. Orange: Joint
stress scaled by mass.

Joint stress. We approximated joint stress as the constraint force
that holds two rigid bodies together at a joint. For each joint, we



computed the maximal joint stress during the landing phase (Figure
11). We observed that, in most trials, the joints which endure the
most impact are those connected to contacting end-effectors (i.e.
hands or feet). The spine joints (lumbar and thoracic vertebrae) and
hip joints are also subject to large impact. However, when we scaled
each joint by the total mass it supports (e.g. the hip joint supports
the mass of the entire leg), we found that the joint stress has low
variance across the entire character’s body, with the exception of
the joints near the end-effectors.

When we compared the joint stress between our motion and a pas-
sive ragdoll motion with the same initial condition, the ragdoll mo-
tion caused much more damage on the neck and the spine (Figure
11). In fact, the only joints that endured similar amount of stress
were those used for the first point of contact (e.g. wrists or an-
kles). These results validate that our controller indeed produces
safer landing motion and protects important body parts. We re-
peated the experiments for different initial conditions. In the worst
case of our experiments, the average joint stress is still four times
lower than landing as a passive ragdoll. The data also show that our
controller generates less damaging landing motion even when the
character cannot roll successfully, such as dropping from 20 meters.

Comparison with video footages. We compared our simulated
motion side-by-side with a collection of video footages ([APR
2011]). The simulations are based on the same landing strategy and
our best guess of the initial conditions from the videos. Although
it is not possible to achieve identical motions, results show that our
motion is qualitatively similar to the video footages.

7.2 Limitations

The main limitation of our work is the lack of balance control after
the character stands up. There are many existing balance control
algorithms we could implement. However, we chose to defer the
implementation until we decide on what the character’s next action
should be. In the freerunning scenario, the character transitions
to running motion seamlessly right after a roll. If freerunning is
our goal, we would modify the current get-up control algorithm to
provide more forward thrust. Other possibilities of the next action
include walking, stepping, jumping, or standing still. Different next
actions will result in different balance strategies. Ideally, a character
should be equipped with motor skills to execute all different balance
strategies and autonomously determines which strategy to execute,
but this is considered out of the scope of this work.

Another limitation is the predefined landing pose for each landing
strategy. This inflexibility can negatively affect the character’s abil-
ity to adapt to different environments. For example, if the character
lands on a narrow wall, the landing pose needs to be adjusted on
the fly. One possible solution is to use a simple inverse kinematics
method to compute desired joint angles before landing.

8 Conclusion

We introduced a real-time physics-based technique to simulate
strategic falling and landing motions. Our control algorithm re-
duces joint stress due to landing impact and allows the character
to efficiently recover from the fall. Given an arbitrary initial posi-
tion and velocity in the air, our control algorithm determines an
appropriate landing strategy and an optimal sequence of actions
to achieve the desired landing velocity and angle of attack. The
character utilizes virtual forces and joint-tracking control mecha-
nisms during the landing phase to successfully turn a fall into a roll.
We demonstrated that our control algorithm is general, efficient,
and robust by simulating motions from different initial conditions,

characters with different body shapes, different physical environ-
ments, and scenarios with real-time user perturbations. The algo-
rithm guides the character to land safely without introducing the
large stress at every joint except for the contacting end-effectors.

Freerunning is a great exemplar to demonstrate human athletic
skills. Those wonderfully simple yet creative movements provide
a rich domain for future research directions. Based on the con-
tribution of this work, we would like to explore other highly dy-
namic skills in freerunning, such as cat crawl, underbar, or turn
vault. These motions are extremely interesting and challenging to
simulate because they involve sophisticated planning and control in
both cognitive and motor control levels, as well as complex inter-
play between the performer and the environment.

The landing strategies described in this work are suitable for highly
dynamic activities, but not optimal for low-clearance falls from
standing height. There is a vast body of research work in biome-
chanics and kinesiology studying fall mechanics of human from
standing height. One future direction of interest is to integrate this
domain knowledge with physical simulation tools to explore new
methods for fall prevention and protection.
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