

‡This work is supported by Natural Science Fund of China (60173062), and by Natural Science Fund of Beijing
(4012008), by National 863 project (2001AA115126)

View-dependent Real-time Terrain Rendering Using Static LOD‡

Ye Yuting, Wang Guoping
Department of Computer Science and Technology, Peking University, Beijing, 100871, P. R. China

{yyt, wgp}@graphics.pku.edu.cn

Abstract Though dynamic and continuous LOD has been widely accepted so far, the

more and more powerful 3d graphics hardware brings about new concepts in fast terrain
rendering. The time spent on deliberately calculating the perfect set of triangles may
overwhelm the cost of leaving them rendering. De Boer presented the GeoMipMap
algorithm as a static LOD that wins over ROAM, a typical and prevailing dynamic LOD
algorithm, in performance. This article aims at further polishing the static algorithm to
overcome its rigid nature, and generates as good image quality as, if not better than the
dynamic algorithm. Firstly, intensive comparisons between GeoMipMap and ROAM are
made to reveal their underlying differences. Then refinements of detail level decision, tile
transition and vertex morphing are presented to provide flexible and smooth results that
make such static approach satisfiable enough to use.

Keywords GeoMipMap; ROAM; real-time performance; 3d graphics hardware

1. INTRODUCTION
Among the current various algorithms to render

massive terrain in real time, Dynamic (and
continuous) Level of Detail (LOD) approaches,
especially the Real-time Optimally Adapting Meshes
(ROAM)[2], may be the most prevailing. The
underlying concept is to minimize the number of
triangles while introducing no perceptible visual
error. As de Boer[1] mentioned, it works well by
reducing the workload of graphics hardware but
transferring the burden to CPU. Since today’s
graphics hardware is capable to process and render
a large amount of triangles per frame, a more
up-to-date approach may be to exploit the 3D
graphics hardware and free the CPU. Unlike the
dynamic LOD, GeoMipMap presented by de Boer is
a static algorithm relying on a series of fixed models.
Instead of adjusting the existing meshes in real time,
GeoMipMap picks up certain models in no time.
Though it cannot deliver a “prefect” set of triangles
to the rendering pipeline, GeoMipMap gains better

performance over ROAM by the least amount of
CPU overhead. Drawbacks are that it cannot
guarantee either frame-to-frame coherence, or
smooth transition between adjacent tiles of different
levels because of the somewhat rigid models. This
article presents refinements to de Boer’s algorithm.
We would use a more flexible equation to pick up
detail levels, bringing fewer triangles without
perceptible errors and also a more constant frame
rate. An alternative mesh to connect different detail
levels is presented for nicer quality. And the use of
vertex morphing makes this discrete approach
seem continuous.

2. GEOMIPMAP VS ROAM
This section will first briefly review the two

algorithms. Then comparisons will be made on the
algorithms, memory requirements, visual fidelity and
real-time performance.
2.1 Review

GeoMipMap can be understood as texture
mipmap technique in geometry, which uses tiles of

View-dependent Real-time Terrain Rendering Using Static LOD

Page 1 of 8

different resolutions to match the projection terrain.
First, it defines levels by skipping every other line in
a previous level of the height field. Then it
pre-computes the actual errors caused by these
rough models. They will be used later as the error
metric. Finally it chooses certain level to render
each tile, according to the real-time viewpoint and
the screen pixel error. The essence is to utilize
graphics hardware by delivering as many triangles
as possible, and to use triangle strip or triangle fans
to speed up rendering. Calculations are minimized
to a few multiples and additions each frame.

ROAM seems a bit different. Its meshes are
organized in a binary tree hierarchy. A triangle is
split by the longest edge to reach a rougher level,
while two triangles sharing the same longest edge
(called a “diamond”[2]) merge into a finer level.
Actual space errors of each triangle in each level
are pre-calculated. When viewpoint changes in
runtime, these errors are converted to screen pixel
error as priorities. Two priority queues dynamically
“split” or “merge” triangles that are not “optimal”. An
effective way to maintain constant frame rate is to
leave the small priority -- the relatively more acute
triangles -- unprocessed if time slice is expired.
Triangles transit smoothly by “force splitting” the
rougher one. Considering the frame-to-frame
coherence, only a small amount of triangles should
be adjusted each frame. It yields so satisfiable
results both in visual fidelity and real-time
performance that it has been widely used so far.
2.2 Algorithm Evaluation

[3] presented 5 criteria to evaluate a real-time
LOD algorithm for height fields as follows:

(i) At any instant, the mesh geometry and the

components that describe it should be directly
and efficiently queryable, allowing for surface
following and fast spatial indexing of both
polygons and vertices.

(ii) Dynamic changes to the geometry of the mesh,
leading to recomputation of surface parameters
or geometry, should not significantly impact the
performance of the system.

(iii) High frequency data such as localized
convexities and concavities, and/or local
changes to the geometry, should not have a
widespread global effect on the complexity of
the model.

(iv) Small changes to the view parameters (e.g.
viewpoint, view direction, field of view) should
lead only to small changes in complexity in order
to minimize uncertainties in prediction and allow
maintenance of (near) constant frame rates.

(v) The algorithm should provide a means of
bounding the loss in image quality incurred by
the approximated geometry of the mesh. That is,
there should exist a consistent and direct
relationship between the input parameters to the
LOD algorithm and the resulting image quality.

 We can see that in general both algorithms fit
these criteria quite well despite their own pros and
cons. The mesh is static in GeoMipMap and is
managed by triangle lists (two priority queues) in
ROAM. Vertices in GeoMipMap can be directly
queried as indices of the height field, but those of
ROAM can only be reached by going through the
binary tree. Considering the number of vertices, cost
is larger in ROAM though trees of the tiles can be
shorter. (ii) and (iii) can be achieved by tiling.
Changes in geometry or localized high frequency
data will affect only the tiles containing them, so
recomputation and model complexity can be kept
relevantly small. Likewise, (iv) and (v) both rely on
the error metric. Both algorithms use screen pixel
error as simplification criterion to guarantee visual
fidelity. But ROAM can maintain a more constant
frame rate than GeoMipMap. It can leave the “near
optimal” triangles (those of small priorities) as they
are when time slice is expired, at the cost of a
slightly larger error. On the other hand, GeoMipMap
maintains the error boundary strictly by rendering
more details. More triangles than necessary is
produced to describe the rest flat area if small
bumps occur. So frame rate depends partly on the
mesh geometry. Anyway, since viewpoint seldom
changes dramatically, geometry will usually have

View-dependent Real-time Terrain Rendering Using Static LOD

Page 2 of 8

Fig1 Force split of triangle T brings 115% more
triangles. Excerpt from [2]

frame-to-frame coherence.
2.3 Memory

Though the capacity of RAM is fleetly increasing,
it can never satisfy human desires. Data is swelling
even more dramatically. GeoMipMap shows great
advantage by requiring few extra memories. Only
the maximum space errors of each level for each tile
need to be stored in runtime. Given total M levels
and N tiles of the terrain, M*N numbers is needed.

ROAM maintains a list of current triangles and a
list of “mergeable” diamonds, as well as the space
errors. Notice that these space errors are of every
triangle in every level. Given total M levels, the
increase in one level will double the number of
triangles. N such tiles yield (Σ2m-1)*N numbers,
where m begins from 2 to M. The maximum length
of two queues is hard to estimate thought, it is sure
that tens of thousands triangles will be rendered
thus stored each frame.

Nonetheless, if raw data are in the form of
integers or even bytes, the total requirement would
not be large in common cases. Tiling technique may
allow dynamic loading of data to further reduce
runtime memory. Still, GeoMipMap has a more
promising future in extraordinary massive data sets
for its few memory requirements.
2.4 Quality

Although visual fidelity is bounded by screen
pixel error threshold, the popping effects and
T-junctions (gaps between different levels) can also
affect visual impression.

ROAM is a polygon-based algorithm which can
provide more flexible meshes. Its meshes have the
merit of isoceles right-angle triangle in two
dimensions. To guarantee smooth transition
between levels, it forces the rougher triangles to
split recursively, until no T-junctions exist[Fig1].

Such process generates smooth meshes but
also many unnecessary triangles, which may
possibly have great impact on real-time
performance. Also, the adaptive process may cause
problem in some cases. As mentioned in 2.2,
smooth change in view parameter usually leads only
to small changes in geometry complexity. ROAM

can gracefully adjust the meshes by a few steps of
split and merge. But at odd times, say when a
change of view direction by turning around leads to
great change of the scene, a large amount of slip
and merge are required, resulting in long processing
time, or large error if constant frame rate is
wanted[Fig2].

Basically, GeoMipMap also divides meshes into
isoceles right-angle triangles. Since it is a tile-based
algorithm, gaps will appear if adjacent tiles are of
different levels. De Boer[1] solved it by “changing
connectivity (or indexing) of vertices for the higher

Fig2 The above was the first frame after turning around.
Below has been adaptive after several frames. (ROAM
implementation of Tuner[5])

View-dependent Real-time Terrain Rendering Using Static LOD

Page 3 of 8

detail GeoMipMap.”[Fig3] The solution is tricky in
that it “does not alter the GeoMipMap level’s vertex
layout” and brings no extra cost. But when the
differences between tiles are great, the connective
triangles would degenerate into long thin lines, which
ruin the mesh quality. Another problem is that it
doesn’t work when all four neighbors need to be
connected. We have to render in a certain order to
prevent this odds. A better solution will be presented
in 3.2. Nonetheless, GeoMipMap do have merits in
controlling screen pixel error. It is tolerant to great
changes between frames. Calculations of each
frame are fixed and unaffected by geometry. It can
maintain high quality images anytime. No “adaptive”
process is perceived.

Popping would be another matter. It is thought to
be caused by sudden switching of detail levels. In
fact it is affected by many factors. ROAM is a
continuous LOD that continuously switches between
detail levels. But it also pops when a triangle is split
or merged. The choice of error metric, mesh
geometry and mesh quality together make up
popping. As a matter of fact, continuous LOD cannot
win over discrete LOD in reducing popping, but
vertices morphing can solve the problem in both
cases. Vertex morphing of GeoMipMap would be
presented in 3.3.
2.5 performance

The reason why de Boer presented GeoMipMap
is that he saw great promise of it to speed up
rendering. He is not the only person to do so.
Marechal[4] did an experiment to illustrate the

power of hardware rendering with low CPU
overhead. He rendered a huge map using both
ROAM (implementation of Bryan Turner[5]) and so
called brute force approach, say simply draws a
quad between any 4 adjacent points on the height
map. Result shows in Fig4 that brute force approach
can outweigh ROAM if less detail is acceptable. It’s
no doubt that GeoMipMap would be far better than
the brute force approach.

Real-time calculations of GeoMipMap only
include distances between viewpoint and the tiles,
and a few comparisons to pick up the appropriate
levels. Most time is spent in rendering triangles.
Moreover, the static models can utilize triangle strip
and triangle fans that further speed up rendering. As
ROAM is elaborately calculating the perfect set of
triangles, it has to call APIs as split and merge many
times, as well as sorting to maintain its priority
queues. The space errors of each Triangle also
need to be computed in real-time. Optimal approach
as triangle strip or display list cannot be utilized in
dynamic algorithm.

The important fact is that the extra CPU
overhead used to reduce triangles may be larger
than leave them to the graphics hardware,
especially when precompile technique is used. A
perfect balance between CPU workload and that of
graphics hardware may yield the best performance.

3. IMPROVEMENTS
As stated before, the static approach will suffer

from its rigid nature in quality and in delivering too
much triangles. In this section, we would like to
present some refinements to GeoMipMap in order to
improve both quality and performance.
3.1 Level Decision

De Boer’s approach to speed up level decision
is to pre-calculate the maximum space error of each
level, then convert them to distance using projection
parameters and the screen pixel error. Distances
from viewpoint to each tile are computed in runtime,
comparing with the precomputed distances to
choose the appropriate levels. [Equ1] is used to
precompute the distances.

Fig3 Solution presented by De Boer. The grey points
are skipped. Expert from [1]

View-dependent Real-time Terrain Rendering Using Static LOD

Page 4 of 8

τ
δ

2⋅
⋅

⋅=
t

vnD mm [Equa1]

Where n is the near clipping plan, t is its top
coordinate as in (l, r, b, t, n, f), v is the vertical
screen resolution in pixels and τ is the screen
pixel error threshold. Dm and δm represent the
maximum distance to use level m and the space
error cased by this level, respectively. The equation
is based on the simplest projection model[Fig5].
[Equa1b] can be deduced from [Equa1a], and
[Equa1b] and [Equa1c] together deduce [Equa1].

n
d

AD
AE

h
==

δ
 [Equa1a]

 n
h

d ⋅=
δ

 [Equa1b]

 h
t

v
⋅=

2
τ [Equa1c]

In the equation, camera direction is assumed to be
horizontal (parallel to x/z plane) because it brings
the highest projection error. Also yaw angle is
ignored (distance from viewpoint to the near clip
plane is assumed to be n constantly) because eyes
are more sensitive to central than peripheral. A
greater peripheral error can be tolerated to speed
up the calculation. To avoid the square root
instruction, [Equa2] is actually used, where C is
considered a constant in run time.

Dm
2 = δm

2 · C2 [Equa2]

=C
τ2⋅
⋅

t
vn

There are drawbacks in it. (i) Parameters n and
t cannot change. It forbids zooming of the camera.

Fig5 A simplified projection model in 2 dimensions

Fig4 Tests are run on Pentium III 600 Mhz, 128 Mb RAM, nVidia TNT2 32 Mb Video, 800x600x32 resolution

View-dependent Real-time Terrain Rendering Using Static LOD

Page 5 of 8

Detail level cannot change in the same way since τ
is a constant. (ii) When projection is simplified in
2-dimension, distances should not be computed in
3-dimension but just of the x/z plane. (iii) Though
[Equa2] is correct as an equation, it exaggerates the
impact of δ to Dm because square is used when
comparison is done linearly.

To avoid these downsides, we would like to
revise it a bit as

2

2
2

d
vn

t
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⋅
⋅

=
τ

δ [Equa3]

Parameters have the similar meaning as in Equa1.
d is the distance between current viewpoint to the
tile center in x/z plane. δ is the square of space error
caused by d for a given τ. But it still compares to the
precalculated δm to pick up a right level. In this way,
decision of level depends more on distance than on
geometry feature. Thus a more constant frame rate
can be maintained by diminishing the impact of
changes in geometry. Notice that the actual screen
pixel error is no longer bounded to τ, but various
dynamically.

d
vn

t
d

vn
t

⋅
⋅

′⋅
=⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⋅
⋅

=
ττ

δ
22 2

2

τδτ
τ

τ ⋅=⋅⋅
⋅

⋅
=′ d

vn
t2

That’s to say, the actual screen pixel error is scaled
by the square root of space error. A more precise
level will be used for a smaller d, bringing smaller δ.
The farther the distance, the larger δ, thus the larger
the actual screen pixel error at that point. It’s
intuitive that we pay less attention to distant object
than to the near. Therefore larger error in distance
can be tolerated, when the near scene can be
approximately bounded by τ. It reduces even more
triangles and becomes faster than the previous
equation. Moreover, n, t and τ can change in real
time, allowing customized detail level and zooming
of the camera. Nonetheless, constant C in Equa2
can still be used by being calculated once every
frame. We don’t bring in more calculations but gain

all the merits mentioned.
3.2 Transition Between Tiles

The approach in GeoMipMap[Fig3] is satisfiable
in most cases when the adjacent tiles differ not
much. It is valuable in that no change of vertices or
extra cost is introduced. The body of a tile is
triangulated in triangle strips, so the connective
edges should not ruin this structure, and they would
be better to have the similar structure. But in some
cases when two adjacent tiles differ much — it’s not
impossible for both distance and geometry
determine the level, thin triangles produce. Though
de Boer claimed that “This process must be
performed for each of the four edges which connect
the GeoMipMap to a lower detail”[1], his solution
fails to do so.

[6] presented another solution that produce
better meshes[Fig6]. But it doesn’t utilize triangle
strip, thereby sacrificing efficiency. [7] shows
whether it makes a difference.

Our solution refers to the above approach and
integrates them together[Fig7]. Only tiles of lower
resolution need to “connect” to a higher resolution
neighbor. The main body stays intact while four
border strips triangulate into triangle fans.
Compared with that of de Boer’s, it produce much
nicer triangles and at the same cost. Also it can
connect to four neighbors at the same time.

Fig6 An alternative approach generates better
triangles but fails to utilize triangle strip. Excerpt
from [6]

View-dependent Real-time Terrain Rendering Using Static LOD

Page 6 of 8

3.3 Vertex Morph
Vertex morphing may be the most effective way

to reduce popping, in both continuous and discrete
LOD. The basic approach is to find a factor f
between 0 and 1, to interpolate vertices between
two successive detail levels. Though most articles
would like to use time as f, de Boer considered the
distance a more proper choice.

nn

n

DD
Dd

f
−

−
=

+1

For GeoMipMap is view-dependent, it’s nice to be
continuous when viewpoint changes. As for our
revised equation, Dn is no longer available, and then
f accordingly becomes a function of δ.

nn

nf
δδ
δδ
−
−

=
+1

They are the same because δ should be
proportional to d (In fact, δ is proportional to d2, but it
dose not matter much in application).

Detail steps are more or less the same as those
presented in [6]. What worth mention are the edges
shared with two tiles. The shared points of the same
level may not be the same because of the different f.
The simplest way was not to morph the edges. If
you do want to do so, be peculiarly careful in
choosing f and the morph level, especially to those
vertices that shared with many line segments.

The amazing effect of morphing is to make the
discrete algorithm seems continuous, switching
smoothly between detail levels.

4. RESULTS
 We test our engine on a PC with x86 Family
Model 8 AT/AT Compatible，261,616KB RAM ，
NVIDIA TNT2 Video，1024*768*16 resolution. The
height map and texture map are 1025*1025, tiling in
33*33. GeoMipMap, our improvement and ROAM
(Turner’s version[5]) are tested and compared.

Though floating point is used for morphing in
GeoMipMap and our improved version, their
performance really outweigh that of ROAM, in terms
of both image quality and frame rate. Under the
same screen pixel threshold, GeoMipMap and our
version produce 30000-odd and 20000-odd
triangles respectively (it’s not the number of
triangles actually rendered considering culling),
reaching frame rates of approximately 25fps and
30fps. We can sense obvious fluctuation in frame
rates using GeoMipMap, while our version goes
more smoothly. Our refinement in level decision
really works well in reducing triangles and level off
the frame rate.

Our meshes look smoother in some strange
geometry[Fig8]. Another effect is to reduce popping
because the connective strips change more nicely
from one level to another.

ROAM produces constantly 10000 triangles
and all the calculation are done with integer, without
morphing. It works better in release mode at near
27fps, but only 20fps in debug mode. It proves that

Fig7 Change the triangulation of 4 corners to connect
to the neighbors. Few extra cost but better quality.

Fig8 Improvement of the mesh.
Above is original GeoMipMap and below is our
improved version

View-dependent Real-time Terrain Rendering Using Static LOD

Page 7 of 8

high CPU overhead can slow down the performance.
Since no morphing is done, popping is quite obvious
especially when turning around. It produces much
less triangles than the other program without better
quality, but is still much slower.

5. CONCLUSIONS
The static LOD exploits 3D graphics hardware to

speed up rendering, and achieves better
performance than the dynamic LOD. We regard it as
a promising approach to use widely in modeling
huge objects (terrain in this case). Our refined
equation for picking up detail level provides runtime
control of the error threshold, which is though to be
only in the dynamic approach, and zooming of the
camera, as well as a flexible error bound that further
reduces the number of triangles without affecting
much the image quality. Moreover, a smooth
transition between different levels can polish the
oddness but introduce no extra cost. We see from
this attempt that the static LOD can surely outweigh
continuous LOD in performance, while producing
the same pleasing quality.

REFERENCES
[1] W. de Boer，Fast Terrain Rendering Using

Geometrical MipMapping, October 31, 2000
http://www.flipcode.com/tutorials/geomipmaps.p
df

[2] Mark Duchaineau, Murray Wolinksy, David E.
Sigeti, Mark C. Miller, Charles Aldrich, Mark B.
Mineev-Weinstein, ROAMing Terrain: Real-time
Optimally Adapting Meshes, Los Alamos

National Laboratory, Lawrence Livermore
National Laboratory, October 19, 1997
http://www.llnl.gov/graphics/ROAM/roam.pdf

[3] Peter Lindstrom, David Koller, William Ribarsky,
Larry F. Hodges, Nick Faust, Gregory A. Turner,
Real-Time, Continuous Level of Detail Rendering
of Height Fields, ACM SIGGRAPH 96，August
1996，pp 109-118
http://www.gvu.gatech.edu/people/peter.lindstro
m/papers/siggraph96/siggraph96.pdf

[4] Sander Marechal， The Second Life of Brute
Force Terrain Mapping， 6/20/2002 ，
http://www.gamedev.net/reference/programming/
features/bruteforce/

[5] Bryan Turner，Real-Time Dynamic Level of Detail
Terrain Rendering with ROAM，April
03, 2000，
http://www.gamasutra.com/features/20000403/tu
rner_01.htm

[6] Dalgaard Larsen，Niels Jørgen Christensen，
Real-time Terrain Rendering using Smooth
Hardware Optimized Level of Detail，Technical
University of Denmark Bent
http://wscg.zcu.cz/wscg2003/Papers_2003/C05.
pdf

[7] Ernest Szoka ，Supervisor: Dr. Wilf R. LaLonde ，
Triangle Strip preserving LOD (T-Strip LOD)V 1.1
(last updated 5/15/2002)，Computer Science
95.495B Honours Project，Carleton University,
Ottawa, Ontario, Canada，April，2002
http://chat.carleton.ca/~eszoka/tstriplod/tstrip.htm

View-dependent Real-time Terrain Rendering Using Static LOD

Page 8 of 8

