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Abstract

Synthesizing the movements of a responsive virtual character in the event of unexpected perturbations has proven a

difficult challenge. To solve this problem, we devise a fully automatic method that learns a nonlinear probabilistic

model of dynamic responses from very few perturbed walking sequences. This model is able to synthesize responses

and recovery motions under new perturbations different from those in the training examples. When perturbations

occur, we propose a physics-based method that initiates motion transitions to the most probable response example

based on the dynamic states of the character. Our algorithm can be applied to any motion sequences without the

need for preprocessing such as segmentation or alignment. The results show that three perturbed motion clips can

sufficiently generate a variety of realistic responses, and 14 clips can create a responsive virtual character that

reacts realistically to external forces in different directions applied on different body parts at different moments in

time.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Animation—

1. Introduction

A challenging task in computer animation is the synthesis
of responsive virtual characters that match the agility of hu-
mans when reacting to unexpected dynamic disturbances. In
such uncertain environments, the strategies humans employ
to respond and to recover are difficult to categorize or to
describe procedurally. Researchers have tackled this prob-
lem with physics simulation and data-driven techniques. Al-
though physics simulation can successfully synthesize real-
istic passive reactions to arbitrary forces, the design of a ro-
bust and purposeful controller operating against disturbances
remains a difficult task. Alternatively, data-driven techniques
use real-world examples to directly capture the agility and
the style of human motions, but they rely on a large dataset
of motions that cover response and recovery behaviors in-
duced by all possible perturbations. In addition to the cost of
acquisition and storage, the key issue with a large dataset is
that it requires tedious preprocessing, such as segmentation,
classification, or warping. Even if one manages to generate
a large dataset with perfectly aligned motions, selecting the
most appropriate motion clips based on physical perturba-
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tions is still challenging due to the difficulty of measuring
and quantifying perturbations during motion acquisition.

To address these problems, we propose a fully auto-
matic, parameter-free approach to synthesizing the motion
of a responsive virtual character reacting to arbitrary, un-
expected external forces during walking. Our algorithm
discovers the dynamic structure of input motions using a
Gaussian process-based nonlinear dynamic model in a low-
dimensional space. Our method overcomes the main issue
associated with large datasets because the model allows im-
perfect input data without any preprocessing as a result of
its predictive power. This model predicts the most proba-
ble pose based on the current dynamic state of the charac-
ter at every frame, which results in a motion similar to the
input both kinematically and dynamically. During perturba-
tions, we use physics simulation to deform the current pose,
which subsequently triggers a transition toward an appro-
priate example in subsequent inferences. Interleaving model
inference and physics simulation in this fashion can generate
transitions among multiple examples under persistent forces
and thus produce novel variations in the synthetic motions.
We highlight the predictive power of our algorithm using a
relatively small set of examples. We also demonstrate that a
wider variety of motions can be synthesized by increasing
the number of examples and dividing them into local mod-
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els and then choosing among them at runtime. These design
choices lead to a novel method that automatically selects the
appropriate motions based on the dynamic states of the char-
acter.

Our results demonstrate the generative power of this
method by synthesizing a continuous walking sequence with
responses to various perturbations arbitrarily provided by the
user. The underlying model for the synthetic sequence con-
tains only three perturbed examples and a normal sequence,
yet it produces realistic human reactions to different pertur-
bations, indicating that our dynamic model and the simula-
tion are consistent with the laws of physics. We also show a
richer variety of responses generated from 14 perturbed ex-
amples grouped into four models. However, our algorithm is
still limited to the range of motions that can be interpolated
by the original data. For example, the character cannot re-
spond to a perturbation that requires a drastically different
recovery strategy unseen in the examples.

This paper has two major contributions: 1) We use a non-
linear dynamic model to organize a small amount of motion
data without preprocessing and parameter tuning; and 2) we
propose a method that applies dynamic responses to existing
data based on physics simulations.

2. Related work

Physics simulation with dynamic controllers can generate re-
alistic responses to physical perturbations. These controllers
are either manually designed [YLvdP07, SCCH09] or opti-
mized [AdSP07,YCBvdP08,CBYvdP08,WFH09] for robust
behaviors. They can also be concatenated or combined to ex-
hibit a wide range of dynamic responses [FvdPT01,dSDP09,
CBvdP09, JYL09]. The success of these controllers usually
depends on the careful tuning of parameters or a complex op-
timization procedure and robust balance strategies that sac-
rifices motion quality. To improve motion quality and fa-
cilitate the design of such dynamic controllers, researchers
have proposed learning them automatically from captured
motions. Controllers are developed to create transitions be-
tween poses [PZ05] or two sequences [SPF03, ZMCF05,
Nat] or to reproduce an entire sequence under perturbations
[ZH02, YCP03, SKL07, dSAP08, YL08, MZS09]. In partic-
ular, Muico et al. [MLPP09] derive controllers from multi-
ple motion sequences that automatically adjust themselves to
environmental contacts. These controllers perform robustly
and conform well to the example motions because the phys-
ical parameters are tailored to the designated motions. How-
ever, they are also restricted to synthesizing motions very
similar to the input, which greatly limits the range of allow-
able perturbations.

Natural responsive motions can also be generated by
blending or concatenating motion capture sequences di-
rectly. To produce high quality animation, most data-driven
algorithms require motion clips to be kinematically and

structurally similar [KGP02,LCR∗02]. This requirement be-
comes increasingly challenging in more dynamic and unpre-
dictable scenarios such as a character physically interacting
with the environment. To synthesize a standing person re-
sponding to pushes on the waist, Yin et al. [YPvdP05] used
linear and angular momentum profiles to parameterize the
motion space, largely reducing the required examples (66
motion sequences). Our method handles more challenging
situations in which the characters must maintain a natural
walking motion against arbitrary perturbations. Arikan and
Forsyth [AFO05] achieved a similar goal with over a thou-
sand examples in an effort to train an oracle that could pre-
dict perceptually pleasing deformations under perturbations.
While their results are very compelling, considerable man-
ual processing and user input are required to learn a power-
ful oracle. Because they built the oracle and applied nearest
neighbor method directly in the high-dimensional parame-
terization space, a large number of examples is required to
ensure smooth interpolation. Our method instead works in a
low-dimensional space that reflects the most essential differ-
ences in perturbed motions so that it requires far fewer data
to generalize a large range of new situations. This design
choice also greatly eases the burden of processing a large
volume of raw input data.

A special challenge in designing efficient algorithms is the
high dimensionality in human motion. Li et al. [LMFP08]
showed that a linear dynamic probabilistic model takes hours
to infer transitions between two sequences in the space of
joint positions. Many researchers seek to simplify computa-
tion using dimension reduction techniques [SHP04, CH07,
TLP06, BP08]. While linear models are simple and effec-
tive, we are interested in nonlinear models such as the Gaus-
sian process latent variable model (GPLVM) [Law04] be-
cause they provide a significantly smaller space that cap-
tures the nonlinear nature of human motions. GPLVM-based
methods have been successfully applied to character anima-
tion [GMHP04] and computer vision [UFHF05]. In partic-
ular, we use SGPLVM with back constraints [LQC06] be-
cause it provides smooth two-way mapping between high-
and low-dimensional spaces, allowing us to learn a mean-
ingful dynamic model in the low-dimensional space.

Similar to modeling human poses, many researchers ap-
proximate human motion dynamics with statistical mod-
els [BH00, LWS02]. Lau et al. [LBJK09] used a dynamic
Bayesian network to synthesize natural spatial and tempo-
ral variations from a small set of data. Gaussian process is
used by Ikemoto et al. [IAF09] to transfer animators’ ed-
its of a character’s motion to another motion, and by Ma
et al. [MLD09] to transfer facial animations. In contrast,
we are interested in modeling the transition dynamics from
input motions. In this regard, we use a variation of the Gaus-
sian process dynamic model (GPDM) [WFH06, UFF06] be-
cause it can accurately capture walking dynamics from a sin-
gle example. Our method differs from GPDM in two aspects.
First, GPDM learns the motion representation and dynam-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Y. Ye & C. K. Liu / Synthesis of Responsive Motion Using a Dynamic Model

ics simultaneously because it must balance consistency with
the data and smoothness in dynamics. Consequently, it usu-
ally yields a difficult optimization problem sensitive to the
scaling of the variables and the initial state. In contrast, our
method separates the learning of motion representations and
dynamics into two simple optimization problems thanks to
the smooth latent space resulting from the use of back con-
straints. Second, GPDM synthesizes the entire sequence at
once while we synthesize new motions on a per frame ba-
sis to incorporate interactive perturbations. Because our pre-
dictions under perturbations always lie on high probability
regions, the results we produce are similar to what GPDM
would produce as an entire sequence.

3. Algorithm

Our method consists of a model learning phase and a motion
synthesis phase. The learning phase directly takes a few cap-
tured sequences as input without preprocessing, producing a
nonlinear dynamic model that represents the data in a low-
dimensional space. This dynamic model is then used in the
synthesis phase to produce new sequences responsive to in-
teractive user perturbations. At each time instance, we solve
for a new pose by maximizing its likelihood in the learned
model given the current dynamics. Interactive user input can
then deform the new pose according to the laws of physics.

3.1. Model learning

Given a small number of input examples, which include a
normal walk sequence and several perturbed ones that ex-
hibit dynamic responses and recovery, our task is to model
the variations between the normal and perturbed motions.
We first learn a low-dimensional space, called latent space,
which captures the most essential differences among the in-
put motions, then we learn a dynamical model in the la-
tent space to capture the motion transition. The latent space
is solved using a nonlinear dimensional reduction method,
scaled GPLVM with back constraints. This method provides
a nonparametric probabilistic model that uses a low dimen-
sional space to explain the variations in the input motions.
Scaled GPLVM is an effective algorithm that reduces the di-
mension of data from very few examples and takes into ac-
count the intrinsic scales in each input dimension. Augment-
ing with back constraints, this algorithm produces a smooth
model that enables us to learn a sensible dynamic model in
the latent space as a separate process. The dynamic model,
formulated as a Gaussian process with second-order dynam-
ics, provides a generative mechanism for synthesizing new
sequences kinematically and dynamically similar to the in-
put motions.

Directly from the captured motions without any prepro-
cessing such as time alignment or annotation, we compute a
set of features for each pose. A feature vector contains two
consecutive poses that correspond to 1

30 of a second for tem-
poral coherence. Ideally, we would like to choose a minimal

set of features from which important dynamic structures can
be revealed and joint configurations can be efficiently recon-
structed with little ambiguity. Our first attempt was to use
joint degrees of freedom (DOFs), but they failed to capture
the dynamic structure of the motions. Joint position has also
been widely used as a feature. However, we could not recon-
struct the full body configuration from joint positions alone
due to ambiguities in the end effectors. Instead, we chose
the center-of-mass (COM) positions of each body node ex-
pressed in the character’s local coordinates to align the first
frame in each input sequence. In addition, global velocity is
included to compute global positions from integration. Fi-
nally, because heel strike and toe off events are important
for walking motions, we replaced the COM of the feet with
heel and toe positions. In total, a feature vector has 120 di-
mensions for a character represented by 18 body nodes and
42 DOFs. Before training, we subtract from each vector the
mean value computed from the normal walk with complete
cycles because we want an unbiased mean that represents the
expected behavior.

Given N D-dimensional feature vectors Y1:N , we want to
solve for the corresponding d-dimensional vectors X1:N in a
low dimensional space with d < D. GPLVM provides such a
mapping as the conditional likelihood of Y given X, modeled
as a Gaussian distribution with a covariance matrix K(X,Θ),
Θ being the hyperparameter of the model (Equation (1)).

p(Y|X,Θ) =
1

(2π)
DN
2 |K|

D
2

exp(−
1
2

tr(K−1
YY

T )). (1)

We use maximum a posteriori (MAP) estimation to compute
X and Θ as the minimum of Equation (2), assuming a Gaus-
sian prior on X and a uniform prior on Θ (see Appendix A
for details).

LP = − ln p(Y|X,Θ)− ln p(X)− ln p(Θ). (2)

Once X is solved, we want to model its time evolution
in the latent space as an approximation of the dynamics in
the feature space. Similar to GPDM [WFH06], we model
the dynamics in X as a second-order autoregressive series,
which results in a joint Gaussian distribution p(X|Φ), where
Φ captures the hyperparameters in this model (Appendix
A). Since X is known here, we need to solve for only Φ by
minimizing Equation (3) :

LD = − ln p(X|Φ)− ln p(Φ). (3)

We use scaled conjugate gradient [Møl93] to solve both
problems. With d = 3 and N around 300 in all our tests,
X and Θ are solved in 10 minutes, and Φ is solved within
a minute. We experienced with different latent dimensions
and found that while a 2D space creates many intersections
in latent trajectories, a 3D latent space is sufficient to rep-
resent the data accurately. We also considered a 4D space
when we found a first-order dynamic model unable to repro-
duce the training motion dynamics. Our experiments show
that upgrading to second-order dynamic model significantly
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improves accuracy while increasing the dimension of the la-
tent space to 4D has little improvement.

3.2. Motion synthesis

We can generate new motions similar to the examples by in-
ferring the latent space model with a dynamic prior. When
no perturbations occur, this dynamic model can synthesize
an infinite normal walking sequence from an initial state.
When a user applies perturbations such as a push, we de-
form the subsequent pose using a physics-based method and
update its latent position accordingly. As a result, the new
latent position deviates from the normal motion and moves
toward an example with similar perturbation dynamics. The
new position also affects future poses because it perturbs the
dynamics of the latent trajectory. Depending on the push, the
perturbed trajectory may then follow one single example or
navigate among a few of them. At the end of the perturba-
tion, the latent trajectory exhibits responses by following the
latent dynamics and eventually transitions back to normal
walking. As long as the latent trajectory stays in the high
probability region in the model, the synthesized motion ap-
pears to use similar strategies as the examples in reaction to
perturbations.

Figure 1 summarizes the motion synthesis procedure for
frame n+1. To handle continuous user input, this procedure
is repeated at every frame to formulate different optimiza-
tion problems that are solved with sequential quadratic pro-
gramming [GSM96]. Given the current motion and its latent
trajectory, we infer the next pose q̃n+1 and its latent position
x̃n+1 from the latent model. Without any perturbations, q̃n+1

is directly output as the desired pose (qn+1 = q̃n+1). If the
character is perturbed, we modify q̃n+1 based on the laws
of physics to get the final pose qn+1 and solve for its latent
position xn+1. The results are then fed back to the pipeline
for subsequence synthesis. We describe each component of
the algorithm in detail as follows:

No

Yes

Infer new pose

Pushed?
Apply 

deformation

Update 

latent positionq̃n+1
qn+1

qn+1

q̃n+1

qn− 2qn− 1qn

qn+1 = q̃n+1

xn
xn−1

xn+1

xn+1 = x̃n+1

x̃n+1

Figure 1: Motion synthesis flow chart for frame n+1.

Infer new pose. Denoting a new sequence as Ŷ and its latent
trajectory as X̂ ; we want to maximize the likelihood of this
new pair given the training set. The conditional likelihood
can be written in terms of the learned models using Bayes’
rule as in Equation (4):

p(Ŷ , X̂ |Y,X,Θ,Φ) ∝ p(Ŷ ,Y|X̂ ,X,Θ)p(X̂ ,X|Φ). (4)

Because the second-order dynamic model takes current and
previous latent positions to infer the next one, the new se-
quence takes three feature vectors in which the last one is
a function of the new pose q̃n+1. We can then solve for
q̃n+1 and x̃n+1 by minimizing Equation (5): q̃n+1, x̃n+1 =
argminLS(qn+1,xn+1), where

LS(qn+1,xn+1) =− ln p(Ŷ (qn+1),Y|X̂(xn+1),X,Θ)

− ln p(X̂(xn+1),X|Φ). (5)

Apply deformation. With interactive user perturbations,
we apply perturbation forces to deform q̃n+1 based on La-
grange’s equation of motion. The deformed pose qn+1 will
satisfy Equation (6):

(

d

dt

∂L

∂q̇ j
−

∂L

∂q j

)∣

∣

∣

∣

qn+1

= u j +J
c
j
T

fc +J
ext
j

T
fext . (6)

Here, L is the Lagrangian of the dynamic system, u j the in-

ternal torque in q j , Jc
j the jth column of the Jacobian matrix

that projects the ground contact force fc onto q j, and Jext
j

projects the external forces fext onto q j . We use finite differ-
ences to compute the joint velocity and the acceleration as
q̇n ≡

1
∆t (qn −qn−1) and q̈n ≡

1
∆t2 (qn+1 −2qn +qn−1).

Due to the lack of force information in the kinematics
data, we have to approximate the generalized forces with
certain assumptions. We assume that the internal torques are
roughly the same as they are in the predicted motion and
that the ground reaction forces can only change smoothly.
Therefore, we approximate the generalized forces from the
predicted pose q̃n+1 as in Equation (7). Compared to other
deformation methods such as the one in [AFO05], we found
our method generates poses that are more consistent with the
dynamic model.

u j +J
c
j
T

fc ≈

(

d

dt

∂L

∂q̇ j
−

∂L

∂q j

)
∣

∣

∣

∣

q̃n+1

. (7)

We substitute the right-hand side of Equation (7) into
Equation (6). Because ∂L

∂q j
does not depend on q̃n+1 or qn+1,

we cancel it on both sides and arrive at the following objec-
tive:

G j(qn+1) =
d

dt

∂L

∂q̇ j

∣

∣

∣

∣

qn+1

−
d

dt

∂L

∂q̇ j

∣

∣

∣

∣

q̃n+1

−J
ext
j

T
fext . (8)

Without perturbations, the foot contacts are maintained
very well thanks to a good dynamic model. However, Equa-
tion (8) may break the contacts with external forces. To pre-
vent foot sliding during perturbations, an additional soft po-
sitional constraint C(qn+1) is imposed on the support foot,
which is determined by simple velocity thresholding. To-
gether we have qn+1 = argmin 1

2 (‖G‖2 + ‖C‖2), where G

consists of G j for all the DOFs.
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Update latent position. Finally, we solve for the latent
position xn+1, which corresponds to qn+1, by minimizing
Equation (5) again.

4. Results

To evaluate our algorithm, we synthesize a walking charac-
ter responding to arbitrary pushes from input data captured at
30 frames per second. We first test our algorithm on a small
data set with one normal walk and three different perturbed
walks in which the same subject takes one or two steps to re-
cover from an unexpected push. We then work with a larger
data set of 14 perturbed walks grouped into four different
models (Figure 4). Each input motion contains one or two
walking cycles ranging from 50 to 70 frames, totaling about
300 poses in each model.

Latent model learning. Given a normal walk and three
perturbed walks, we learn a three-dimensional latent space
that represents the most significant variations in the 120-
dimensional feature space. Figure 2 shows the resulting la-
tent trajectories. This model correctly organizes the nor-
mal walk into two limit cycles, but the three perturbed mo-
tions form locally-deformed cycles around the normal walk
and gradually transition to it toward the end (in counter-
clockwise order). The beginning and the end of the deformed
cycles coincide with the onset and recovery moments of the
perturbed motions, respectively. The result demonstrates that
our model captures the fundamental dynamic structures of
the input motions without any prior knowledge of the mo-
tion contents such as walking phases or different recovery
strategies used.

Figure 2: Latent trajectories of four walking motions.

Motion synthesis. We conduct several experiments to test
the generalization ability of our algorithm. We first test
whether the dynamic model can generate smooth transitions
between motions by reproducing the forward push example
in the above model (Figure 2). Because these motions are not
aligned, our algorithm needs to produce transitions between
the normal walk and the forward push. When we apply an es-
timated forward push to a synthesized normal walk, the vir-
tual character correctly responds by gradually transitioning

to the forward push example. Accordingly, the correspond-
ing latent trajectory smoothly connects the two examples
with intermediate points rather than snapping immediately
to the closest point in the push motion or changing abruptly
to random positions. After reaching the end of the forward
push example, the synthesized trajectory transitions back to
the normal walk following the dynamic flows learned from
the other examples.

In the next test, we evaluate the generalizability of a sin-
gle example motion using a model with one normal walk
and one backward push sequence in which the push is ap-
plied on the left side of the subject’s torso during right-leg
support. We apply pushes to the character from different di-
rections on different body parts and at different timing (Fig-
ure 3). Results show that one example can generalize to a
reasonable range of new situations. For example, different
directions of backward pushes induce realistic responsive
motions. However, the character responds only marginally
to a forward push and quickly resumes the normal walk. We
observe that different magnitudes of force and points of ap-
plication induce smaller variations than different timing and
force directions. Therefore, they are more generalizable.

We further test the capability of the model in Figure 2 by
applying random pushes to generate a continuous respon-
sive sequence. The resulting motion reacts immediately to
unexpected perturbations with various recovery strategies
seen in the examples, such as changing step size and timing.
Pushes applied during recovery lead to smooth transitions
among different examples without any visual discrepancy.
From all the results we produce, the synthesized trajectories
are smooth, and they remain in the high probability region
in the latent space.

(a) Directions (b) Body parts (c) Timing

Figure 3: Perturbations (indicated by arrows) in different

situations. In Figure 3(c), the yellow character is pushed at

a later time.

Model switching. Given more examples, a model is gen-
eralizable to a wider range of situations. However, the per-
formance of our algorithm decreases because a higher-
dimensional latent space is needed to capture more varia-
tions in a large input dataset. To this end, we design a sim-
ple model-switching scheme based on two observations: 1)
Trajectories that are significantly different and thus far away
in the latent space have little chance to be interpolated; and
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2) perturbation directions and timing play a more important
role in dynamic responses. As proof of concept, we simply
use the force direction as a criterion to divide examples into
different models that we choose at runtime.

T

Model 1

Model 4 Model 3

Model 2

left 

double 

right

double

Support Phase

T     torso

W    waist

RS   right shoulder

LS   left shoulder

Pushed Body PartT
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LS

LS W

T

LS

TT

W

TT
T RS

LS
LSRS

RS T

T

W

T

N

example synthesis

Figure 4: Example perturbations vs. synthetic perturba-

tions. The angle of the circle indicates perturbation direc-

tions (character facing north), and the distance to the center

indicates perturbation magnitudes (only for synthetic ones).

We arrange 14 perturbed motions into four models (Fig-
ure 4) that share the same normal walk so that each model
alone is able to generate a normal sequence. When a user ap-
plies a push to the character interactively, a model is chosen
according to the force direction. If the chosen model is dif-
ferent from the one being used, the last three poses are used
as initial states for the new model to synthesize subsequent
responses. The new model then takes over until another push
triggers a different model. With 14 examples, we can gen-
erate a rich variety of reactions to various pushes without
any visual discrepancy at the model-switching moment (Fig-
ure 5).

Figure 5: Continuous responses to two consecutive pushes.

Time performance. Although offline learning is relatively
efficient, the online synthesis runs at only one frame per sec-
ond on a 2.8GHz Intel processor due to our naive compu-
tation of the large kernel matrix. To speed up the computa-
tion, many existing acceleration techniques such as active set
methods or sparse approximation methods [LSH03, SG06]
can be applied. With a more efficient implementation based
on these acceleration algorithms, we expect our method to
run at interactive rates.

5. Discussion and conclusion

In this section, we discuss some design choices and limita-
tions of our method.

Data variability. In all our tests, we used four motions to
learn a 3D latent space with second-order dynamics. We
chose motions that could be intuitively interpolated into a
model. For example, including a forward push and a side
push is more likely to produce a meaningful interpolation
than including a push at the left-leg support and one at the
right-leg support. Our method can include a large number
and variety of examples. However, the computation time will
increase significantly as the model requires higher dimen-
sional latent space and more costly computation of the co-
variance matrix in the Gaussian process. We found four mo-
tions with around 300 frames a good compromise between
model capability and computation efficiency. Instead of in-
creasing the number of input motions and the latent space
dimensions, we propose a simple model-switching scheme
to address this issue. We demonstrate that with 14 examples
grouped into four models, we can synthesize a virtual char-
acter reacting to arbitrary forces without extra runtime cost
compared to using a single model. While our simple exper-
imental scheme works very well, we plan to explore more
sophisticated clustering and indexing schemes in the future.

Model generalizability. Our model produces new poses by
interpolation and extrapolation of input data based on the
learned probability function. High-likelihood regions in the
model correspond to poses that are similar to the input and
thus permit both high-quality interpolation and extrapola-
tion, and the quality deteriorates as the likelihood decreases
in regions with sparse data. When a deformation that does
not lie on the latent space occurs due to perturbations, the
subsequent prediction often uses large torques to eliminate
these deformations, resulting in visually stiff motions. In
spite of this inherent limitation of data-driven approaches,
our algorithm provides greater generalizability than previous
methods by fully exploring the capacity of the available data,
as our results show that three examples can already generate
a visually rich set of responsive motions. Encouraged by the
success in walking motions, we plan to apply our method on
different walking styles and even different types of motions
such as running or climbing because our method makes no
assumptions about the input. As a base motion and specific
variations are supplied for training, our method can be ap-
plied.

Model verification. Although our method can deal with
noisy input and missing information, we require that at least
one of the perturbed examples provides transition dynamics
to normal walking. In addition, we require that all models
share a normal walk motion so that switching between them
is seamless during normal motions. To allow perturbations
in the middle of recovery would require models also shar-
ing perturbed examples. Otherwise, the transition point will
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score low likelihood in the newly chosen model. We cur-
rently rely on manual testing to evaluate whether a model
works as expected. We would like to use our method for
guiding data gathering in areas where examples are sparse
and to come up with systematic methods for evaluating the
quality of a database.

In conclusion, we present a fully automatic method that
generalizes a small number of examples by combining a la-
tent variable model and a physics-based method. Given only
three similar perturbed motions, we can generate a variety
of realistic responses to perturbations that are not presented
in the training data. We also experimented with a simple
model-switching scheme that works with a larger dataset.
With a database of 15 motions, we can generate walking mo-
tions responsive to arbitrary perturbations, which employ re-
alistic human balancing strategies such as changing step size
or timing. We are interested in applying our method to create
transitions among a motion database. Using the latent space
model and the dynamic model as both a quality metric and
a motion synthesis mechanism, we can make use of small
databases without any manual processing effort. However,
to work with a large data set efficiently, we need to explore
automatic methods for clustering data into local models.

Appendix A: Implementation details

We describe our exact formulations in this section for com-
pleteness. We refer the readers to Lawrence [Law06] and
Wang et al. [WFH08] for detailed explanations of GPLVM
and GPDM, respectively.

SGPLVM with back constraints. We denote the feature
vectors as YN×D and the latent vectors as XN×d . The hyper-
parameters of the model include a diagonal scaling matrix
WD×D = diag(w1, · · · ,wD), white noise variance β, and for-
ward kernel parameters α and γ. With back constraining, la-
tent positions become linear combinations of backward ker-
nels computed from data points. The weight matrix AN×d

and backward kernel parameters α′ and γ′ are solved to get
X. We place a Gaussian prior on the latent positions and a
uniform prior over the hyperparameters. LP is then formu-
lated as

LP =
D

2
ln |K|−N ln |W|+

1
2

tr(K−1
YW

2
Y

T )

+
1
2

tr(XX
T )+ lnβαγα′γ′,

X = K
′
A.

Radial basis functions (RBF) are used in both forward kernel
KN×N and backward kernel K′

N×N . Their entries are

k(xi,x j) = αexp(−
γ

2
‖xi −x j‖

2)+δxi,x j β
−1

,

k
′(yi,y j) = α′ exp(−

γ′

2
‖yi −y j‖

2),

where δ is the Dirac delta function. Latent trajectories are
initialized as the first three principle components of the fea-
tures. Hyperparameters are initialized as β = 0.1,α = γ =
1.0, and α′ = γ′ = 2.0.

Dynamic model. Given M latent trajectories X1:M , we
solve for a second-order dynamic model in the latent space
as follows:

LD =
d

2
ln |KD|+

1
2

tr(K−1
D XoutX

T
out)+ lnβDαDγ1γ2,

Xout = [X
(1)
3:n1

T
, · · · ,X

(M)
3:nM

T
]T ,

where βD is the white noise variance, and αD,γ1, and γ2 are
parameters of kernel KD. An entry in KD is computed from a

pair of latent positions in Xin = [X
(1)
1:n1−2

T
, · · · ,X

(M)
1:nM−2

T
]T :

kD((xi−1,xi),(x j−1,x j))

= αD exp(−
γ1

2
‖xi−1 −x j−1‖

2 −
γ2

2
‖xi −x j‖

2)+δβ−1
D .

Hyperparameters are initialized as αD = βD = 1.0.

Inference. We use three previous frames to infer a new
pose. The likelihood of a sequence with three feature vec-
tors Ŷ (qn+1) and the corresponding latent positions X̂(xn+1)
is then computed as

LS(Ŷ , X̂) =
1
2

ln |K(X̂)|+
1
2

tr(K−1(X̂)ZY W
2
Z

T
Y )

+
1
2

ln |KD(X̂in)|+
1
2

tr(K−1
D (X̂in)ZX Z

T
X ),

where

Ŷ = [yn−1,yn,yn+1(qn+1)]
T
, X̂ = [xn−1,xn,xn+1]

T
,

ZY = Ŷ −KX̂ ,XK
−1

Y,

K(X̂) = KX̂ ,X̂ −KX̂ ,XK
−1

K
T
X̂ ,X

,

X̂in = [xn−1,xn]
T
, X̂out = x

T
n+1,

ZX = X̂out −KX̂in,Xin
K

−1
D Xout ,

KD(X̂in) = KX̂in,X̂in
−KX̂in,Xin

K
−1
D K

T
X̂in,Xin

.
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